File size: 17,549 Bytes
6aee514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#app.py
import os
import streamlit as st
import logging
import queue
import time
import sys

# Add parent directory to path for OWL imports
sys.path.append('../')

try:
    from main import research_company, generate_interview_questions, create_interview_prep_plan
except ImportError as e:
    st.error(f"Error importing functions: {e}")
    st.stop()

# Setup logging with queue to capture logs for display
log_queue = queue.Queue()

class StreamlitLogHandler(logging.Handler):
    def __init__(self, log_queue):
        super().__init__()
        self.log_queue = log_queue
        self.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
    def emit(self, record):
        log_entry = self.format(record)
        self.log_queue.put(log_entry)

# Configure root logger
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
for handler in root_logger.handlers[:]:
    root_logger.removeHandler(handler)
root_logger.addHandler(StreamlitLogHandler(log_queue))
root_logger.addHandler(logging.StreamHandler())  # Also log to console

# Configure Streamlit page
st.set_page_config(
    page_title="Interview Prep Assistant(With OWL πŸ¦‰)", 
    page_icon="πŸ¦‰",
    layout="wide"
)

# Custom CSS
st.markdown("""
<style>
    .main-title {
        font-size: 2.5rem;
        color: #4a89dc;
        text-align: center;
        margin-bottom: 1rem;
    }
    .sub-title {
        font-size: 1.2rem;
        color: #666;
        text-align: center;
        margin-bottom: 2rem;
    }
    .conversation-container {
        border: 1px solid #e0e0e0;
        border-radius: 8px;
        margin: 10px 0;
        padding: 10px;
        max-height: 500px;
        overflow-y: auto;
    }
    .user-message {
        background-color: #f0f7ff;
        border-left: 4px solid #4a89dc;
        padding: 10px;
        margin: 8px 0;
        border-radius: 4px;
    }
    .assistant-message {
        background-color: #f1f8e9;
        border-left: 4px solid #7cb342;
        padding: 10px;
        margin: 8px 0;
        border-radius: 4px;
    }
    .tool-call {
        background-color: #fff8e1;
        border: 1px solid #ffe0b2;
        padding: 8px;
        margin: 5px 0;
        border-radius: 4px;
        font-family: monospace;
        font-size: 0.9em;
    }
    .round-header {
        background-color: #e8eaf6;
        padding: 5px 10px;
        font-weight: bold;
        border-radius: 4px;
        margin: 15px 0 5px 0;
    }
    .final-answer {
        background-color: #e8f5e9;
        border-left: 5px solid #43a047;
        padding: 15px;
        margin: 15px 0;
        border-radius: 4px;
    }
    .metrics-container {
        display: flex;
        justify-content: space-around;
        margin: 15px 0;
        padding: 10px;
        background-color: #f5f5f5;
        border-radius: 4px;
    }
    .metric-box {
        text-align: center;
        padding: 8px 15px;
        background-color: white;
        border-radius: 8px;
        box-shadow: 0 1px 3px rgba(0,0,0,0.12);
    }
    .metric-value {
        font-size: 1.4rem;
        font-weight: bold;
        color: #4a89dc;
    }
    .metric-label {
        font-size: 0.8rem;
        color: #666;
    }
    .running-indicator {
        display: flex;
        align-items: center;
        justify-content: center;
        gap: 10px;
        margin: 15px 0;
        padding: 10px;
        background-color: #e3f2fd;
        border-radius: 4px;
        animation: pulse 2s infinite;
    }
    @keyframes pulse {
        0% { opacity: 1; }
        50% { opacity: 0.7; }
        100% { opacity: 1; }
    }
</style>
""", unsafe_allow_html=True)

def display_conversation(chat_history):
    """Display the conversation history in a structured format"""
    if not chat_history:
        st.info("No conversation available")
        return
    
    st.markdown("<div class='conversation-container'>", unsafe_allow_html=True)
    
    for idx, message in enumerate(chat_history):
        round_num = idx + 1
        st.markdown(f"<div class='round-header'>Round {round_num}</div>", unsafe_allow_html=True)
        
        # Display user message
        if "user" in message and message["user"]:
            st.markdown(f"<div class='user-message'><b>πŸ§‘β€πŸ’Ό Job Seeker:</b><br>{message['user']}</div>", unsafe_allow_html=True)
        
        # Display assistant message
        if "assistant" in message and message["assistant"]:
            assistant_content = message["assistant"]
            # Remove any note about truncation for cleaner display
            if "[Note: This conversation was limited" in assistant_content:
                assistant_content = assistant_content.replace("[Note: This conversation was limited to maintain response quality. The complete thought process is available in the logs.]", "")
            
            st.markdown(f"<div class='assistant-message'><b>πŸ¦‰ Interview Coach:</b><br>{assistant_content}</div>", unsafe_allow_html=True)
        
        # Display tool calls if any
        if "tool_calls" in message and message["tool_calls"]:
            for tool in message["tool_calls"]:
                tool_name = tool.get('name', 'Unknown Tool')
                st.markdown(f"<div class='tool-call'><b>πŸ”§ Tool Used: {tool_name}</b></div>", unsafe_allow_html=True)
    
    st.markdown("</div>", unsafe_allow_html=True)

def display_metrics(duration, token_count, num_rounds):
    """Display metrics in a visually appealing format"""
    st.markdown("<div class='metrics-container'>", unsafe_allow_html=True)
    
    # Time taken
    st.markdown(f"""
    <div class='metric-box'>
        <div class='metric-value'>{duration:.1f}s</div>
        <div class='metric-label'>Execution Time</div>
    </div>
    """, unsafe_allow_html=True)
    
    # Token usage
    completion_tokens = token_count.get('completion_token_count', 0)
    prompt_tokens = token_count.get('prompt_token_count', 0)
    total_tokens = completion_tokens + prompt_tokens
    
    st.markdown(f"""
    <div class='metric-box'>
        <div class='metric-value'>{total_tokens:,}</div>
        <div class='metric-label'>Total Tokens</div>
    </div>
    """, unsafe_allow_html=True)
    
    # Conversation rounds
    st.markdown(f"""
    <div class='metric-box'>
        <div class='metric-value'>{num_rounds}</div>
        <div class='metric-label'>Conversation Rounds</div>
    </div>
    """, unsafe_allow_html=True)
    
    st.markdown("</div>", unsafe_allow_html=True)

def get_logs():
    """Retrieve logs from the queue"""
    logs = []
    while not log_queue.empty():
        try:
            logs.append(log_queue.get_nowait())
        except queue.Empty:
            break
    return logs

def main():
    # Header
    st.markdown("<h1 class='main-title'>πŸ¦‰ Interview Preparation Assistant</h1>", unsafe_allow_html=True)
    st.markdown("<p class='sub-title'>Powered by multi-agent AI collaboration</p>", unsafe_allow_html=True)
    
    # Input section
    with st.container():
        col1, col2 = st.columns(2)
        with col1:
            job_role = st.text_input("Job Role", "Machine Learning Engineer")
        with col2:
            company_name = st.text_input("Company Name", "Google")
    
    # Main functionality tabs
    tab1, tab2, tab3, tab4 = st.tabs(["Company Research", "Interview Questions", "Preparation Plan", "System Logs"])
    
    # Tab 1: Company Research
    with tab1:
        st.header("πŸ” Company Research")
        st.write("Get detailed insights about the company to help with your interview preparation.")
        
        if st.button("Research Company", use_container_width=True):
            with st.spinner():
                # Display running indicator
                status = st.empty()
                status.markdown("<div class='running-indicator'>πŸ”„ Researching company information...</div>", unsafe_allow_html=True)
                
                # Progress bar
                progress = st.progress(0)
                
                # Progress callback
                def update_progress(current_round, max_rounds):
                    progress_value = min(current_round / max_rounds, 0.95)
                    progress.progress(progress_value)
                    status.markdown(f"<div class='running-indicator'>πŸ”„ Processing conversation round {current_round}/{max_rounds}...</div>", unsafe_allow_html=True)
                
                # Execute research
                try:
                    start_time = time.time()
                    result = research_company(
                        company_name=company_name,
                        detailed=True,  # Always use detailed mode
                        limited_searches=False,  # Don't limit searches
                        progress_callback=update_progress
                    )
                    duration = time.time() - start_time
                    
                    # Update progress to complete
                    progress.progress(1.0)
                    status.markdown("<div class='running-indicator' style='background-color: #e8f5e9;'>βœ… Research completed!</div>", unsafe_allow_html=True)
                    
                    # Display metrics
                    display_metrics(
                        duration=duration,
                        token_count=result["token_count"],
                        num_rounds=len(result["chat_history"])
                    )
                    
                    # Display final answer
                    st.subheader("πŸ“ Research Results")
                    st.markdown(f"<div class='final-answer'>{result['answer']}</div>", unsafe_allow_html=True)
                    
                    # Display conversation
                    st.subheader("πŸ’¬ Conversation Process")
                    display_conversation(result["chat_history"])
                    
                except Exception as e:
                    st.error(f"Error: {str(e)}")
                    logging.exception("Error in company research")
    
    # Tab 2: Interview Questions
    with tab2:
        st.header("❓ Interview Questions")
        st.write("Generate tailored interview questions for your target role and company.")
        
        # Question type selector (adds interactivity but doesn't change behavior for now)
        question_type = st.radio(
            "Question Type",
            ["Technical", "Behavioral", "Company-Specific", "All"],
            horizontal=True
        )
        
        if st.button("Generate Questions", use_container_width=True):
            with st.spinner():
                # Display running indicator
                status = st.empty()
                status.markdown("<div class='running-indicator'>πŸ”„ Creating interview questions...</div>", unsafe_allow_html=True)
                
                # Progress bar
                progress = st.progress(0)
                
                # Progress callback
                def update_progress(current_round, max_rounds):
                    progress_value = min(current_round / max_rounds, 0.95)
                    progress.progress(progress_value)
                    status.markdown(f"<div class='running-indicator'>πŸ”„ Processing conversation round {current_round}/{max_rounds}...</div>", unsafe_allow_html=True)
                
                # Execute question generation
                try:
                    start_time = time.time()
                    result = generate_interview_questions(
                        job_role=job_role,
                        company_name=company_name,
                        detailed=True,  # Always use detailed mode
                        limited_searches=False,  # Don't limit searches
                        progress_callback=update_progress
                    )
                    duration = time.time() - start_time
                    
                    # Update progress to complete
                    progress.progress(1.0)
                    status.markdown("<div class='running-indicator' style='background-color: #e8f5e9;'>βœ… Questions generated!</div>", unsafe_allow_html=True)
                    
                    # Display metrics
                    display_metrics(
                        duration=duration,
                        token_count=result["token_count"],
                        num_rounds=len(result["chat_history"])
                    )
                    
                    # Display final answer
                    st.subheader("πŸ“ Generated Questions")
                    st.markdown(f"<div class='final-answer'>{result['answer']}</div>", unsafe_allow_html=True)
                    
                    # Display conversation
                    st.subheader("πŸ’¬ Conversation Process")
                    display_conversation(result["chat_history"])
                    
                except Exception as e:
                    st.error(f"Error: {str(e)}")
                    logging.exception("Error in question generation")
    
    # Tab 3: Preparation Plan
    with tab3:
        st.header("πŸ“‹ Interview Preparation Plan")
        st.write("Create a comprehensive step-by-step plan to prepare for your interview.")
        
        if st.button("Create Preparation Plan", use_container_width=True):
            with st.spinner():
                # Display running indicator
                status = st.empty()
                status.markdown("<div class='running-indicator'>πŸ”„ Creating preparation plan...</div>", unsafe_allow_html=True)
                
                # Progress bar
                progress = st.progress(0)
                
                # Progress callback
                def update_progress(current_round, max_rounds):
                    progress_value = min(current_round / max_rounds, 0.95)
                    progress.progress(progress_value)
                    status.markdown(f"<div class='running-indicator'>πŸ”„ Processing conversation round {current_round}/{max_rounds}...</div>", unsafe_allow_html=True)
                
                # Execute plan creation
                try:
                    start_time = time.time()
                    result = create_interview_prep_plan(
                        job_role=job_role,
                        company_name=company_name,
                        detailed=True,  # Always use detailed mode
                        limited_searches=False,  # Don't limit searches
                        progress_callback=update_progress
                    )
                    duration = time.time() - start_time
                    
                    # Update progress to complete
                    progress.progress(1.0)
                    status.markdown("<div class='running-indicator' style='background-color: #e8f5e9;'>βœ… Plan created!</div>", unsafe_allow_html=True)
                    
                    # Display metrics
                    display_metrics(
                        duration=duration,
                        token_count=result["token_count"],
                        num_rounds=len(result["chat_history"])
                    )
                    
                    # Display final answer
                    st.subheader("πŸ“ Preparation Plan")
                    st.markdown(f"<div class='final-answer'>{result['answer']}</div>", unsafe_allow_html=True)
                    
                    # Display conversation
                    st.subheader("πŸ’¬ Conversation Process")
                    display_conversation(result["chat_history"])
                    
                except Exception as e:
                    st.error(f"Error: {str(e)}")
                    logging.exception("Error in preparation plan creation")
    
    # Tab 4: System Logs
    with tab4:
        st.header("πŸ”§ System Logs")
        st.write("View detailed system logs for debugging.")
        
        logs_container = st.empty()
        
        # Get and display logs
        logs = get_logs()
        if logs:
            logs_container.code("\n".join(logs))
        else:
            logs_container.info("No logs available yet.")
        
        # Manual refresh button
        if st.button("Refresh Logs"):
            logs = get_logs()
            if logs:
                logs_container.code("\n".join(logs))
            else:
                logs_container.info("No logs available yet.")
        
        # Auto-refresh toggle
        auto_refresh = st.checkbox("Auto-refresh logs", value=True)
        if auto_refresh:
            st.markdown(
                """
                <script>
                    function refreshLogs() {
                        const checkbox = document.querySelector('.stCheckbox input[type="checkbox"]');
                        if (checkbox && checkbox.checked) {
                            const refreshButton = document.querySelector('button:contains("Refresh Logs")');
                            if (refreshButton) refreshButton.click();
                        }
                        setTimeout(refreshLogs, 3000);
                    }
                    setTimeout(refreshLogs, 3000);
                </script>
                """,
                unsafe_allow_html=True
            )

if __name__ == "__main__":
    try:
        logging.info("Starting Interview Preparation Assistant application")
        main()
    except Exception as e:
        st.error(f"Application error: {str(e)}")
        logging.exception("Application error")