File size: 15,344 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations
import base64
from abc import ABC, abstractmethod
from io import BytesIO
from math import ceil
from typing import TYPE_CHECKING, List, Optional
from PIL import Image
from camel.logger import get_logger
from camel.types import (
ModelType,
OpenAIImageType,
OpenAIVisionDetailType,
UnifiedModelType,
)
from camel.utils import dependencies_required
if TYPE_CHECKING:
from mistral_common.protocol.instruct.request import ( # type:ignore[import-not-found]
ChatCompletionRequest,
)
from camel.messages import OpenAIMessage
LOW_DETAIL_TOKENS = 85
FIT_SQUARE_PIXELS = 2048
SHORTEST_SIDE_PIXELS = 768
SQUARE_PIXELS = 512
SQUARE_TOKENS = 170
EXTRA_TOKENS = 85
logger = get_logger(__name__)
def get_model_encoding(value_for_tiktoken: str):
r"""Get model encoding from tiktoken.
Args:
value_for_tiktoken: Model value for tiktoken.
Returns:
tiktoken.Encoding: Model encoding.
"""
import tiktoken
try:
encoding = tiktoken.encoding_for_model(value_for_tiktoken)
except KeyError:
if value_for_tiktoken in [
ModelType.O1.value,
ModelType.O1_MINI.value,
ModelType.O1_PREVIEW.value,
]:
encoding = tiktoken.get_encoding("o200k_base")
else:
logger.info("Model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return encoding
class BaseTokenCounter(ABC):
r"""Base class for token counters of different kinds of models."""
@abstractmethod
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
r"""Count number of tokens in the provided message list.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
int: Number of tokens in the messages.
"""
pass
class OpenAITokenCounter(BaseTokenCounter):
def __init__(self, model: UnifiedModelType):
r"""Constructor for the token counter for OpenAI models.
Args:
model (UnifiedModelType): Model type for which tokens will be
counted.
"""
self.model: str = model.value_for_tiktoken
self.tokens_per_message: int
self.tokens_per_name: int
if self.model == "gpt-3.5-turbo-0301":
# Every message follows <|start|>{role/name}\n{content}<|end|>\n
self.tokens_per_message = 4
# If there's a name, the role is omitted
self.tokens_per_name = -1
elif ("gpt-3.5-turbo" in self.model) or ("gpt-4" in self.model):
self.tokens_per_message = 3
self.tokens_per_name = 1
elif ("o1" in self.model) or ("o3" in self.model):
self.tokens_per_message = 2
self.tokens_per_name = 1
else:
# flake8: noqa :E501
raise NotImplementedError(
"Token counting for OpenAI Models is not presently "
f"implemented for model {model}. "
"See https://github.com/openai/openai-python/blob/main/chatml.md "
"for information on how messages are converted to tokens. "
"See https://platform.openai.com/docs/models/gpt-4"
"or https://platform.openai.com/docs/models/gpt-3-5"
"for information about openai chat models."
)
self.encoding = get_model_encoding(self.model)
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
r"""Count number of tokens in the provided message list with the
help of package tiktoken.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
int: Number of tokens in the messages.
"""
num_tokens = 0
for message in messages:
num_tokens += self.tokens_per_message
for key, value in message.items():
if not isinstance(value, list):
num_tokens += len(
self.encoding.encode(str(value), disallowed_special=())
)
else:
for item in value:
if item["type"] == "text":
num_tokens += len(
self.encoding.encode(
str(
item["text"],
),
disallowed_special=(),
)
)
elif item["type"] == "image_url":
image_str: str = item["image_url"]["url"]
detail = item["image_url"]["detail"]
image_prefix_format = "data:image/{};base64,"
image_prefix: Optional[str] = None
for image_type in list(OpenAIImageType):
# Find the correct image format
image_prefix = image_prefix_format.format(
image_type.value
)
if image_prefix in image_str:
break
assert isinstance(image_prefix, str)
encoded_image = image_str.split(image_prefix)[1]
image_bytes = BytesIO(
base64.b64decode(encoded_image)
)
image = Image.open(image_bytes)
num_tokens += self._count_tokens_from_image(
image, OpenAIVisionDetailType(detail)
)
if key == "name":
num_tokens += self.tokens_per_name
# every reply is primed with <|start|>assistant<|message|>
num_tokens += 3
return num_tokens
def _count_tokens_from_image(
self, image: Image.Image, detail: OpenAIVisionDetailType
) -> int:
r"""Count image tokens for OpenAI vision model. An :obj:`"auto"`
resolution model will be treated as :obj:`"high"`. All images with
:obj:`"low"` detail cost 85 tokens each. Images with :obj:`"high"` detail
are first scaled to fit within a 2048 x 2048 square, maintaining their
aspect ratio. Then, they are scaled such that the shortest side of the
image is 768px long. Finally, we count how many 512px squares the image
consists of. Each of those squares costs 170 tokens. Another 85 tokens are
always added to the final total. For more details please refer to `OpenAI
vision docs <https://platform.openai.com/docs/guides/vision>`_
Args:
image (PIL.Image.Image): Image to count number of tokens.
detail (OpenAIVisionDetailType): Image detail type to count
number of tokens.
Returns:
int: Number of tokens for the image given a detail type.
"""
if detail == OpenAIVisionDetailType.LOW:
return LOW_DETAIL_TOKENS
width, height = image.size
if width > FIT_SQUARE_PIXELS or height > FIT_SQUARE_PIXELS:
scaling_factor = max(width, height) / FIT_SQUARE_PIXELS
width = int(width / scaling_factor)
height = int(height / scaling_factor)
scaling_factor = min(width, height) / SHORTEST_SIDE_PIXELS
scaled_width = int(width / scaling_factor)
scaled_height = int(height / scaling_factor)
h = ceil(scaled_height / SQUARE_PIXELS)
w = ceil(scaled_width / SQUARE_PIXELS)
total = EXTRA_TOKENS + SQUARE_TOKENS * h * w
return total
class AnthropicTokenCounter(BaseTokenCounter):
@dependencies_required('anthropic')
def __init__(self, model: str):
r"""Constructor for the token counter for Anthropic models.
Args:
model (str): The name of the Anthropic model being used.
"""
from anthropic import Anthropic
self.client = Anthropic()
self.model = model
@dependencies_required('anthropic')
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
r"""Count number of tokens in the provided message list using
loaded tokenizer specific for this type of model.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
int: Number of tokens in the messages.
"""
from anthropic.types import MessageParam
return self.client.messages.count_tokens(
messages=[
MessageParam(
content=str(msg["content"]),
role="user" if msg["role"] == "user" else "assistant",
)
for msg in messages
],
model=self.model,
).input_tokens
class GeminiTokenCounter(BaseTokenCounter):
def __init__(self, model_type: UnifiedModelType):
r"""Constructor for the token counter for Gemini models.
Args:
model_type (UnifiedModelType): Model type for which tokens will be
counted.
"""
import google.generativeai as genai
self._client = genai.GenerativeModel(model_type)
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
r"""Count number of tokens in the provided message list using
loaded tokenizer specific for this type of model.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
int: Number of tokens in the messages.
"""
converted_messages = []
for message in messages:
role = message.get('role')
if role == 'assistant':
role_to_gemini = 'model'
else:
role_to_gemini = 'user'
converted_message = {
"role": role_to_gemini,
"parts": message.get("content"),
}
converted_messages.append(converted_message)
return self._client.count_tokens(converted_messages).total_tokens
class LiteLLMTokenCounter(BaseTokenCounter):
def __init__(self, model_type: UnifiedModelType):
r"""Constructor for the token counter for LiteLLM models.
Args:
model_type (UnifiedModelType): Model type for which tokens will be
counted.
"""
self.model_type = model_type
self._token_counter = None
self._completion_cost = None
@property
def token_counter(self):
if self._token_counter is None:
from litellm import token_counter
self._token_counter = token_counter
return self._token_counter
@property
def completion_cost(self):
if self._completion_cost is None:
from litellm import completion_cost
self._completion_cost = completion_cost
return self._completion_cost
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
r"""Count number of tokens in the provided message list using
the tokenizer specific to this type of model.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in LiteLLM API format.
Returns:
int: Number of tokens in the messages.
"""
return self.token_counter(model=self.model_type, messages=messages)
def calculate_cost_from_response(self, response: dict) -> float:
r"""Calculate the cost of the given completion response.
Args:
response (dict): The completion response from LiteLLM.
Returns:
float: The cost of the completion call in USD.
"""
return self.completion_cost(completion_response=response)
class MistralTokenCounter(BaseTokenCounter):
def __init__(self, model_type: ModelType):
r"""Constructor for the token counter for Mistral models.
Args:
model_type (ModelType): Model type for which tokens will be
counted.
"""
from mistral_common.tokens.tokenizers.mistral import ( # type:ignore[import-not-found]
MistralTokenizer,
)
self.model_type = model_type
# Determine the model type and set the tokenizer accordingly
model_name = (
"codestral-22b"
if self.model_type
in {
ModelType.MISTRAL_CODESTRAL,
ModelType.MISTRAL_CODESTRAL_MAMBA,
}
else self.model_type
)
self.tokenizer = MistralTokenizer.from_model(model_name)
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int:
r"""Count number of tokens in the provided message list using
loaded tokenizer specific for this type of model.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
int: Total number of tokens in the messages.
"""
total_tokens = 0
for msg in messages:
tokens = self.tokenizer.encode_chat_completion(
self._convert_response_from_openai_to_mistral(msg)
).tokens
total_tokens += len(tokens)
return total_tokens
def _convert_response_from_openai_to_mistral(
self, openai_msg: OpenAIMessage
) -> ChatCompletionRequest:
r"""Convert an OpenAI message to a Mistral ChatCompletionRequest.
Args:
openai_msg (OpenAIMessage): An individual message with OpenAI
format.
Returns:
ChatCompletionRequest: The converted message in Mistral's request
format.
"""
from mistral_common.protocol.instruct.request import (
ChatCompletionRequest, # type:ignore[import-not-found]
)
mistral_request = ChatCompletionRequest( # type: ignore[type-var]
model=self.model_type,
messages=[openai_msg],
)
return mistral_request |