File size: 27,896 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import ast
import inspect
import logging
import warnings
from inspect import Parameter, getsource, signature
from typing import Any, Callable, Dict, Mapping, Optional, Tuple, Type

from docstring_parser import parse
from jsonschema.exceptions import SchemaError
from jsonschema.validators import Draft202012Validator as JSONValidator
from pydantic import BaseModel, create_model
from pydantic.fields import FieldInfo

from camel.agents import ChatAgent
from camel.models import BaseModelBackend, ModelFactory
from camel.types import ModelPlatformType, ModelType
from camel.utils import get_pydantic_object_schema, to_pascal

logger = logging.getLogger(__name__)


def _remove_a_key(d: Dict, remove_key: Any) -> None:
    r"""Remove a key from a dictionary recursively."""
    if isinstance(d, dict):
        for key in list(d.keys()):
            if key == remove_key:
                del d[key]
            else:
                _remove_a_key(d[key], remove_key)


def _remove_title_recursively(data, parent_key=None):
    r"""Recursively removes the 'title' key from all levels of a nested
    dictionary, except when 'title' is an argument name in the schema.
    """
    if isinstance(data, dict):
        # Only remove 'title' if it's not an argument name
        if parent_key not in [
            "properties",
            "$defs",
            "items",
            "allOf",
            "oneOf",
            "anyOf",
        ]:
            data.pop("title", None)

        # Recursively process each key-value pair
        for key, value in data.items():
            _remove_title_recursively(value, parent_key=key)
    elif isinstance(data, list):
        # Recursively process each element in the list
        for item in data:
            _remove_title_recursively(item, parent_key=parent_key)


def get_openai_function_schema(func: Callable) -> Dict[str, Any]:
    r"""Generates a schema dict for an OpenAI function based on its signature.

    This function is deprecated and will be replaced by
    :obj:`get_openai_tool_schema()` in future versions. It parses the
    function's parameters and docstring to construct a JSON schema-like
    dictionary.

    Args:
        func (Callable): The OpenAI function to generate the schema for.

    Returns:
        Dict[str, Any]: A dictionary representing the JSON schema of the
            function, including its name, description, and parameter
            specifications.
    """
    openai_function_schema = get_openai_tool_schema(func)["function"]
    return openai_function_schema


def get_openai_tool_schema(func: Callable) -> Dict[str, Any]:
    r"""Generates an OpenAI JSON schema from a given Python function.

    This function creates a schema compatible with OpenAI's API specifications,
    based on the provided Python function. It processes the function's
    parameters, types, and docstrings, and constructs a schema accordingly.

    Note:
        - Each parameter in `func` must have a type annotation; otherwise, it's
          treated as 'Any'.
        - Variable arguments (*args) and keyword arguments (**kwargs) are not
          supported and will be ignored.
        - A functional description including a brief and detailed explanation
          should be provided in the docstring of `func`.
        - All parameters of `func` must be described in its docstring.
        - Supported docstring styles: ReST, Google, Numpydoc, and Epydoc.

    Args:
        func (Callable): The Python function to be converted into an OpenAI
                         JSON schema.

    Returns:
        Dict[str, Any]: A dictionary representing the OpenAI JSON schema of
                        the provided function.

    See Also:
        `OpenAI API Reference
            <https://platform.openai.com/docs/api-reference/assistants/object>`_
    """
    params: Mapping[str, Parameter] = signature(func).parameters
    fields: Dict[str, Tuple[type, FieldInfo]] = {}
    for param_name, p in params.items():
        param_type = p.annotation
        param_default = p.default
        param_kind = p.kind
        param_annotation = p.annotation
        # Variable parameters are not supported
        if (
            param_kind == Parameter.VAR_POSITIONAL
            or param_kind == Parameter.VAR_KEYWORD
        ):
            continue
        # If the parameter type is not specified, it defaults to typing.Any
        if param_annotation is Parameter.empty:
            param_type = Any
        # Check if the parameter has a default value
        if param_default is Parameter.empty:
            fields[param_name] = (param_type, FieldInfo())
        else:
            fields[param_name] = (param_type, FieldInfo(default=param_default))

    # Applying `create_model()` directly will result in a mypy error,
    # create an alias to avoid this.
    def _create_mol(name, field):
        return create_model(name, **field)

    model = _create_mol(to_pascal(func.__name__), fields)
    parameters_dict = get_pydantic_object_schema(model)

    # The `"title"` is generated by `model.model_json_schema()`
    # but is useless for openai json schema, remove generated 'title' from
    # parameters_dict
    _remove_title_recursively(parameters_dict)

    docstring = parse(func.__doc__ or "")
    for param in docstring.params:
        if (name := param.arg_name) in parameters_dict["properties"] and (
            description := param.description
        ):
            parameters_dict["properties"][name]["description"] = description

    short_description = docstring.short_description or ""
    long_description = docstring.long_description or ""
    if long_description:
        func_description = f"{short_description}\n{long_description}"
    else:
        func_description = short_description

    openai_function_schema = {
        "name": func.__name__,
        "description": func_description,
        "parameters": parameters_dict,
    }

    openai_tool_schema = {
        "type": "function",
        "function": openai_function_schema,
    }
    return openai_tool_schema


def generate_docstring(
    code: str,
    model: Optional[BaseModelBackend] = None,
) -> str:
    r"""Generates a docstring for a given function code using LLM.

    This function leverages a language model to generate a
    PEP 8/PEP 257-compliant docstring for a provided Python function.
    If no model is supplied, a default gpt-4o-mini is used.

    Args:
        code (str): The source code of the function.
        model (Optional[BaseModelBackend]): An optional language model backend
            instance. If not provided, a default gpt-4o-mini is used.

    Returns:
        str: The generated docstring.
    """
    # Create the docstring prompt
    docstring_prompt = '''
    **Role**: Generate professional Python docstrings conforming to 
    PEP 8/PEP 257.

    **Requirements**:
    - Use appropriate format: reST, Google, or NumPy, as needed.
    - Include parameters, return values, and exceptions.
    - Reference any existing docstring in the function and 
      retain useful information.

    **Input**: Python function.

    **Output**: Docstring content (plain text, no code markers).

    **Example:**

    Input:
    ```python
    def add(a: int, b: int) -> int:
        return a + b
    ```

    Output:
    Adds two numbers.
    Args:
        a (int): The first number.
        b (int): The second number.

    Returns:
        int: The sum of the two numbers.

    **Task**: Generate a docstring for the function below.

    '''
    # Initialize assistant with system message and model
    assistant_sys_msg = "You are a helpful assistant."
    docstring_assistant = ChatAgent(assistant_sys_msg, model=model)

    # Create user message to prompt the assistant
    user_msg = docstring_prompt + code

    # Get the response containing the generated docstring
    response = docstring_assistant.step(user_msg)
    return response.msg.content


class FunctionTool:
    r"""An abstraction of a function that OpenAI chat models can call. See
    https://platform.openai.com/docs/api-reference/chat/create.

    By default, the tool schema will be parsed from the func, or you can
    provide a user-defined tool schema to override.

    Args:
        func (Callable): The function to call. The tool schema is parsed from
            the function signature and docstring by default.
        openai_tool_schema (Optional[Dict[str, Any]], optional): A
            user-defined OpenAI tool schema to override the default result.
            (default: :obj:`None`)
        synthesize_schema (Optional[bool], optional): Whether to enable the
            use of a schema assistant model to automatically synthesize the
            schema if validation fails or no valid schema is provided.
            (default: :obj:`False`)
        synthesize_schema_model (Optional[BaseModelBackend], optional): An
            assistant model (e.g., an LLM model) used to synthesize the schema
            if `synthesize_schema` is enabled and no valid schema is
            provided. (default: :obj:`None`)
        synthesize_schema_max_retries (int, optional): The maximum
            number of attempts to retry schema synthesis using the schema
            assistant model if the previous attempts fail. (default: 2)
        synthesize_output (Optional[bool], optional): Flag for enabling
            synthesis output mode, where output is synthesized based on the
            function's execution. (default: :obj:`False`)
        synthesize_output_model (Optional[BaseModelBackend], optional):
            Model used for output synthesis in synthesis mode.
            (default: :obj:`None`)
        synthesize_output_format (Optional[Type[BaseModel]], optional): Format
            for the response when synthesizing output. (default: :obj:`None`)
    """

    def __init__(
        self,
        func: Callable,
        openai_tool_schema: Optional[Dict[str, Any]] = None,
        synthesize_schema: Optional[bool] = False,
        synthesize_schema_model: Optional[BaseModelBackend] = None,
        synthesize_schema_max_retries: int = 2,
        synthesize_output: Optional[bool] = False,
        synthesize_output_model: Optional[BaseModelBackend] = None,
        synthesize_output_format: Optional[Type[BaseModel]] = None,
    ) -> None:
        self.func = func
        self.openai_tool_schema = openai_tool_schema or get_openai_tool_schema(
            func
        )
        self.synthesize_output = synthesize_output
        self.synthesize_output_model = synthesize_output_model
        if synthesize_output and synthesize_output_model is None:
            self.synthesize_output_model = ModelFactory.create(
                model_platform=ModelPlatformType.DEFAULT,
                model_type=ModelType.DEFAULT,
            )
            logger.warning(
                "Warning: No synthesize_output_model provided. "
                f"Use `{self.synthesize_output_model.model_type}` to "
                "synthesize the output."
            )
        self.synthesize_output_format: Optional[type[BaseModel]] = None
        return_annotation = inspect.signature(self.func).return_annotation
        if synthesize_output_format is not None:
            self.synthesize_output_format = synthesize_output_format
        elif isinstance(return_annotation, type) and issubclass(
            return_annotation, BaseModel
        ):
            self.synthesize_output_format = return_annotation

        self.synthesize_schema_model = synthesize_schema_model
        if synthesize_schema:
            if openai_tool_schema:
                logger.warning("""The user-defined OpenAI tool schema will be
                              overridden by the schema assistant model.""")
            if self.synthesize_schema_model is None:
                self.synthesize_schema_model = ModelFactory.create(
                    model_platform=ModelPlatformType.DEFAULT,
                    model_type=ModelType.DEFAULT,
                )
                logger.warning(
                    "Warning: No synthesize_schema_model provided. "
                    f"Use `{self.synthesize_schema_model.model_type}` to "
                    "synthesize the schema."
                )
            schema = self.synthesize_openai_tool_schema(
                synthesize_schema_max_retries
            )
            if schema:
                self.openai_tool_schema = schema
            else:
                raise ValueError(
                    f"Failed to synthesize a valid schema for "
                    f"{self.func.__name__}."
                )

    def __call__(self, *args: Any, **kwargs: Any) -> Any:
        if self.synthesize_output:
            result = self.synthesize_execution_output(args, kwargs)
            return result
        else:
            # Pass the extracted arguments to the indicated function
            try:
                result = self.func(*args, **kwargs)
                return result
            except Exception as e:
                raise ValueError(
                    f"Execution of function {self.func.__name__} failed with "
                    f"arguments {args} and {kwargs}. "
                    f"Error: {e}"
                )

    @staticmethod
    def validate_openai_tool_schema(
        openai_tool_schema: Dict[str, Any],
    ) -> None:
        r"""Validates the OpenAI tool schema against
        :obj:`ToolAssistantToolsFunction`.
        This function checks if the provided :obj:`openai_tool_schema` adheres
        to the specifications required by OpenAI's
        :obj:`ToolAssistantToolsFunction`. It ensures that the function
        description and parameters are correctly formatted according to JSON
        Schema specifications.
        Args:
            openai_tool_schema (Dict[str, Any]): The OpenAI tool schema to
                validate.
        Raises:
            ValidationError: If the schema does not comply with the
                specifications.
            SchemaError: If the parameters do not meet JSON Schema reference
                specifications.
        """
        # Check the type
        if not openai_tool_schema["type"]:
            raise ValueError("miss `type` in tool schema.")

        # Check the function description, if no description then raise warming
        if not openai_tool_schema["function"].get("description"):
            warnings.warn(f"""Function description is missing for 
                          {openai_tool_schema['function']['name']}. This may 
                          affect the quality of tool calling.""")

        # Validate whether parameters
        # meet the JSON Schema reference specifications.
        # See https://platform.openai.com/docs/guides/gpt/function-calling
        # for examples, and the
        # https://json-schema.org/understanding-json-schema/ for
        # documentation about the format.
        parameters = openai_tool_schema["function"]["parameters"]
        try:
            JSONValidator.check_schema(parameters)
        except SchemaError as e:
            raise e

        # Check the parameter description, if no description then raise warming
        properties: Dict[str, Any] = parameters["properties"]
        for param_name in properties.keys():
            param_dict = properties[param_name]
            if "description" not in param_dict:
                warnings.warn(f"""Parameter description is missing for 
                            {param_dict}. This may affect the quality of tool 
                            calling.""")

    def get_openai_tool_schema(self) -> Dict[str, Any]:
        r"""Gets the OpenAI tool schema for this function.

        This method returns the OpenAI tool schema associated with this
        function, after validating it to ensure it meets OpenAI's
        specifications.

        Returns:
            Dict[str, Any]: The OpenAI tool schema for this function.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema

    def set_openai_tool_schema(self, schema: Dict[str, Any]) -> None:
        r"""Sets the OpenAI tool schema for this function.

        Allows setting a custom OpenAI tool schema for this function.

        Args:
            schema (Dict[str, Any]): The OpenAI tool schema to set.
        """
        self.openai_tool_schema = schema

    def get_openai_function_schema(self) -> Dict[str, Any]:
        r"""Gets the schema of the function from the OpenAI tool schema.

        This method extracts and returns the function-specific part of the
        OpenAI tool schema associated with this function.

        Returns:
            Dict[str, Any]: The schema of the function within the OpenAI tool
                schema.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema["function"]

    def set_openai_function_schema(
        self,
        openai_function_schema: Dict[str, Any],
    ) -> None:
        r"""Sets the schema of the function within the OpenAI tool schema.

        Args:
            openai_function_schema (Dict[str, Any]): The function schema to
                set within the OpenAI tool schema.
        """
        self.openai_tool_schema["function"] = openai_function_schema

    def get_function_name(self) -> str:
        r"""Gets the name of the function from the OpenAI tool schema.

        Returns:
            str: The name of the function.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema["function"]["name"]

    def set_function_name(self, name: str) -> None:
        r"""Sets the name of the function in the OpenAI tool schema.

        Args:
            name (str): The name of the function to set.
        """
        self.openai_tool_schema["function"]["name"] = name

    def get_function_description(self) -> str:
        r"""Gets the description of the function from the OpenAI tool
        schema.

        Returns:
            str: The description of the function.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema["function"]["description"]

    def set_function_description(self, description: str) -> None:
        r"""Sets the description of the function in the OpenAI tool schema.

        Args:
            description (str): The description for the function.
        """
        self.openai_tool_schema["function"]["description"] = description

    def get_paramter_description(self, param_name: str) -> str:
        r"""Gets the description of a specific parameter from the function
        schema.

        Args:
            param_name (str): The name of the parameter to get the
                description.

        Returns:
            str: The description of the specified parameter.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema["function"]["parameters"]["properties"][
            param_name
        ]["description"]

    def set_paramter_description(
        self,
        param_name: str,
        description: str,
    ) -> None:
        r"""Sets the description for a specific parameter in the function
        schema.

        Args:
            param_name (str): The name of the parameter to set the description
                for.
            description (str): The description for the parameter.
        """
        self.openai_tool_schema["function"]["parameters"]["properties"][
            param_name
        ]["description"] = description

    def get_parameter(self, param_name: str) -> Dict[str, Any]:
        r"""Gets the schema for a specific parameter from the function schema.

        Args:
            param_name (str): The name of the parameter to get the schema.

        Returns:
            Dict[str, Any]: The schema of the specified parameter.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema["function"]["parameters"]["properties"][
            param_name
        ]

    def set_parameter(self, param_name: str, value: Dict[str, Any]):
        r"""Sets the schema for a specific parameter in the function schema.

        Args:
            param_name (str): The name of the parameter to set the schema for.
            value (Dict[str, Any]): The schema to set for the parameter.
        """
        try:
            JSONValidator.check_schema(value)
        except SchemaError as e:
            raise e
        self.openai_tool_schema["function"]["parameters"]["properties"][
            param_name
        ] = value

    def synthesize_openai_tool_schema(
        self,
        max_retries: Optional[int] = None,
    ) -> Dict[str, Any]:
        r"""Synthesizes an OpenAI tool schema for the specified function.

        This method uses a language model (LLM) to synthesize the OpenAI tool
        schema for the specified function by first generating a docstring and
        then creating a schema based on the function's source code. The
        schema synthesis and validation process is retried up to
        `max_retries` times in case of failure.

        Args:
            max_retries (Optional[int], optional): The maximum number of
                retries for schema synthesis and validation if the process
                fails. (default: :obj:`None`)

        Returns:
            Dict[str, Any]: The synthesis OpenAI tool schema for the function.

        Raises:
            ValueError: If schema synthesis or validation fails after the
                maximum number of retries, a ValueError is raised, prompting
                manual schema setting.
        """
        code = getsource(self.func)
        retries = 0
        if max_retries is None:
            max_retries = 0
        # Retry loop to handle schema synthesis and validation
        while retries <= max_retries:
            try:
                # Generate the docstring and the schema
                docstring = generate_docstring(
                    code, self.synthesize_schema_model
                )
                self.func.__doc__ = docstring
                schema = get_openai_tool_schema(self.func)
                # Validate the schema
                self.validate_openai_tool_schema(schema)
                return schema

            except Exception as e:
                retries += 1
                if retries == max_retries:
                    raise ValueError(
                        f"Failed to synthesize the OpenAI tool Schema after "
                        f"{max_retries} retries. "
                        f"Please set the OpenAI tool schema for "
                        f"function {self.func.__name__} manually."
                    ) from e
                logger.warning("Schema validation failed. Retrying...")

        return {}

    def synthesize_execution_output(
        self,
        args: Optional[tuple[Any, ...]] = None,
        kwargs: Optional[Dict[str, Any]] = None,
    ) -> Any:
        r"""Synthesizes the output of the function based on the provided
        positional arguments and keyword arguments.

        Args:
            args (Optional[tuple]): Positional arguments to pass to the
                function during synthesis. (default: :obj:`None`)
            kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass to the
                function during synthesis. (default: :obj:`None`)

        Returns:
            Any: Synthesized output from the function execution. If no
                synthesis model is provided, a warning is logged.
        """
        import textwrap

        # Retrieve the function source code
        function_string = inspect.getsource(self.func)

        # Check and update docstring if necessary
        if self.func.__doc__ is not None:
            function_string = textwrap.dedent(function_string)
            tree = ast.parse(function_string)
            func_node = (
                tree.body[0]
                if isinstance(tree.body[0], ast.FunctionDef)
                else None
            )
            if func_node:
                existing_docstring = ast.get_docstring(func_node)
                if existing_docstring != self.func.__doc__:
                    func_node.body[0] = ast.Expr(
                        value=ast.Constant(value=self.func.__doc__, kind=None)
                    )
                    function_string = ast.unparse(tree)

        # Append the args and kwargs information to the function string
        if args:
            function_string += f"\nargs:\n{list(args)}"
        if kwargs:
            function_string += f"\nkwargs:\n{kwargs}"

        # Define the assistant system message
        assistant_sys_msg = '''
**Role:** AI Assistant specialized in synthesizing tool execution outputs
without actual execution.

**Capabilities:**
- Analyzes function to understand their
  purpose and expected outputs.
- Generates synthetic outputs based on the function logic.
- Ensures the synthesized output is contextually accurate and aligns with the
  function's intended behavior.

**Instructions:**
1. **Input:** Provide the function code, function docstring, args, and kwargs.
2. **Output:** Synthesize the expected output of the function based on the
   provided args and kwargs.

**Example:**
- **User Input:**
def sum(a, b, c=0):
    """Adds three numbers together."""
    return a + b + c

- **Input Arguments:**
args: (1, 2)
kwargs: {"c": 3}

- **Output:**
6

**Note:**
- Just return the synthesized output of the function without any explanation.
- The output should be in plain text without any formatting.
'''

        # Initialize the synthesis agent
        synthesis_agent = ChatAgent(
            assistant_sys_msg,
            model=self.synthesize_output_model,
        )

        # User message combining function string and additional context
        user_msg = function_string
        response = synthesis_agent.step(
            user_msg,
            response_format=self.synthesize_output_format,
        )

        return response.msg.content

    @property
    def parameters(self) -> Dict[str, Any]:
        r"""Getter method for the property :obj:`parameters`.

        Returns:
            Dict[str, Any]: the dictionary containing information of
                parameters of this function.
        """
        self.validate_openai_tool_schema(self.openai_tool_schema)
        return self.openai_tool_schema["function"]["parameters"]["properties"]

    @parameters.setter
    def parameters(self, value: Dict[str, Any]) -> None:
        r"""Setter method for the property :obj:`parameters`. It will
        firstly check if the input parameters schema is valid. If invalid,
        the method will raise :obj:`jsonschema.exceptions.SchemaError`.

        Args:
            value (Dict[str, Any]): the new dictionary value for the
                function's parameters.
        """
        try:
            JSONValidator.check_schema(value)
        except SchemaError as e:
            raise e
        self.openai_tool_schema["function"]["parameters"]["properties"] = value