File size: 27,896 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import ast
import inspect
import logging
import warnings
from inspect import Parameter, getsource, signature
from typing import Any, Callable, Dict, Mapping, Optional, Tuple, Type
from docstring_parser import parse
from jsonschema.exceptions import SchemaError
from jsonschema.validators import Draft202012Validator as JSONValidator
from pydantic import BaseModel, create_model
from pydantic.fields import FieldInfo
from camel.agents import ChatAgent
from camel.models import BaseModelBackend, ModelFactory
from camel.types import ModelPlatformType, ModelType
from camel.utils import get_pydantic_object_schema, to_pascal
logger = logging.getLogger(__name__)
def _remove_a_key(d: Dict, remove_key: Any) -> None:
r"""Remove a key from a dictionary recursively."""
if isinstance(d, dict):
for key in list(d.keys()):
if key == remove_key:
del d[key]
else:
_remove_a_key(d[key], remove_key)
def _remove_title_recursively(data, parent_key=None):
r"""Recursively removes the 'title' key from all levels of a nested
dictionary, except when 'title' is an argument name in the schema.
"""
if isinstance(data, dict):
# Only remove 'title' if it's not an argument name
if parent_key not in [
"properties",
"$defs",
"items",
"allOf",
"oneOf",
"anyOf",
]:
data.pop("title", None)
# Recursively process each key-value pair
for key, value in data.items():
_remove_title_recursively(value, parent_key=key)
elif isinstance(data, list):
# Recursively process each element in the list
for item in data:
_remove_title_recursively(item, parent_key=parent_key)
def get_openai_function_schema(func: Callable) -> Dict[str, Any]:
r"""Generates a schema dict for an OpenAI function based on its signature.
This function is deprecated and will be replaced by
:obj:`get_openai_tool_schema()` in future versions. It parses the
function's parameters and docstring to construct a JSON schema-like
dictionary.
Args:
func (Callable): The OpenAI function to generate the schema for.
Returns:
Dict[str, Any]: A dictionary representing the JSON schema of the
function, including its name, description, and parameter
specifications.
"""
openai_function_schema = get_openai_tool_schema(func)["function"]
return openai_function_schema
def get_openai_tool_schema(func: Callable) -> Dict[str, Any]:
r"""Generates an OpenAI JSON schema from a given Python function.
This function creates a schema compatible with OpenAI's API specifications,
based on the provided Python function. It processes the function's
parameters, types, and docstrings, and constructs a schema accordingly.
Note:
- Each parameter in `func` must have a type annotation; otherwise, it's
treated as 'Any'.
- Variable arguments (*args) and keyword arguments (**kwargs) are not
supported and will be ignored.
- A functional description including a brief and detailed explanation
should be provided in the docstring of `func`.
- All parameters of `func` must be described in its docstring.
- Supported docstring styles: ReST, Google, Numpydoc, and Epydoc.
Args:
func (Callable): The Python function to be converted into an OpenAI
JSON schema.
Returns:
Dict[str, Any]: A dictionary representing the OpenAI JSON schema of
the provided function.
See Also:
`OpenAI API Reference
<https://platform.openai.com/docs/api-reference/assistants/object>`_
"""
params: Mapping[str, Parameter] = signature(func).parameters
fields: Dict[str, Tuple[type, FieldInfo]] = {}
for param_name, p in params.items():
param_type = p.annotation
param_default = p.default
param_kind = p.kind
param_annotation = p.annotation
# Variable parameters are not supported
if (
param_kind == Parameter.VAR_POSITIONAL
or param_kind == Parameter.VAR_KEYWORD
):
continue
# If the parameter type is not specified, it defaults to typing.Any
if param_annotation is Parameter.empty:
param_type = Any
# Check if the parameter has a default value
if param_default is Parameter.empty:
fields[param_name] = (param_type, FieldInfo())
else:
fields[param_name] = (param_type, FieldInfo(default=param_default))
# Applying `create_model()` directly will result in a mypy error,
# create an alias to avoid this.
def _create_mol(name, field):
return create_model(name, **field)
model = _create_mol(to_pascal(func.__name__), fields)
parameters_dict = get_pydantic_object_schema(model)
# The `"title"` is generated by `model.model_json_schema()`
# but is useless for openai json schema, remove generated 'title' from
# parameters_dict
_remove_title_recursively(parameters_dict)
docstring = parse(func.__doc__ or "")
for param in docstring.params:
if (name := param.arg_name) in parameters_dict["properties"] and (
description := param.description
):
parameters_dict["properties"][name]["description"] = description
short_description = docstring.short_description or ""
long_description = docstring.long_description or ""
if long_description:
func_description = f"{short_description}\n{long_description}"
else:
func_description = short_description
openai_function_schema = {
"name": func.__name__,
"description": func_description,
"parameters": parameters_dict,
}
openai_tool_schema = {
"type": "function",
"function": openai_function_schema,
}
return openai_tool_schema
def generate_docstring(
code: str,
model: Optional[BaseModelBackend] = None,
) -> str:
r"""Generates a docstring for a given function code using LLM.
This function leverages a language model to generate a
PEP 8/PEP 257-compliant docstring for a provided Python function.
If no model is supplied, a default gpt-4o-mini is used.
Args:
code (str): The source code of the function.
model (Optional[BaseModelBackend]): An optional language model backend
instance. If not provided, a default gpt-4o-mini is used.
Returns:
str: The generated docstring.
"""
# Create the docstring prompt
docstring_prompt = '''
**Role**: Generate professional Python docstrings conforming to
PEP 8/PEP 257.
**Requirements**:
- Use appropriate format: reST, Google, or NumPy, as needed.
- Include parameters, return values, and exceptions.
- Reference any existing docstring in the function and
retain useful information.
**Input**: Python function.
**Output**: Docstring content (plain text, no code markers).
**Example:**
Input:
```python
def add(a: int, b: int) -> int:
return a + b
```
Output:
Adds two numbers.
Args:
a (int): The first number.
b (int): The second number.
Returns:
int: The sum of the two numbers.
**Task**: Generate a docstring for the function below.
'''
# Initialize assistant with system message and model
assistant_sys_msg = "You are a helpful assistant."
docstring_assistant = ChatAgent(assistant_sys_msg, model=model)
# Create user message to prompt the assistant
user_msg = docstring_prompt + code
# Get the response containing the generated docstring
response = docstring_assistant.step(user_msg)
return response.msg.content
class FunctionTool:
r"""An abstraction of a function that OpenAI chat models can call. See
https://platform.openai.com/docs/api-reference/chat/create.
By default, the tool schema will be parsed from the func, or you can
provide a user-defined tool schema to override.
Args:
func (Callable): The function to call. The tool schema is parsed from
the function signature and docstring by default.
openai_tool_schema (Optional[Dict[str, Any]], optional): A
user-defined OpenAI tool schema to override the default result.
(default: :obj:`None`)
synthesize_schema (Optional[bool], optional): Whether to enable the
use of a schema assistant model to automatically synthesize the
schema if validation fails or no valid schema is provided.
(default: :obj:`False`)
synthesize_schema_model (Optional[BaseModelBackend], optional): An
assistant model (e.g., an LLM model) used to synthesize the schema
if `synthesize_schema` is enabled and no valid schema is
provided. (default: :obj:`None`)
synthesize_schema_max_retries (int, optional): The maximum
number of attempts to retry schema synthesis using the schema
assistant model if the previous attempts fail. (default: 2)
synthesize_output (Optional[bool], optional): Flag for enabling
synthesis output mode, where output is synthesized based on the
function's execution. (default: :obj:`False`)
synthesize_output_model (Optional[BaseModelBackend], optional):
Model used for output synthesis in synthesis mode.
(default: :obj:`None`)
synthesize_output_format (Optional[Type[BaseModel]], optional): Format
for the response when synthesizing output. (default: :obj:`None`)
"""
def __init__(
self,
func: Callable,
openai_tool_schema: Optional[Dict[str, Any]] = None,
synthesize_schema: Optional[bool] = False,
synthesize_schema_model: Optional[BaseModelBackend] = None,
synthesize_schema_max_retries: int = 2,
synthesize_output: Optional[bool] = False,
synthesize_output_model: Optional[BaseModelBackend] = None,
synthesize_output_format: Optional[Type[BaseModel]] = None,
) -> None:
self.func = func
self.openai_tool_schema = openai_tool_schema or get_openai_tool_schema(
func
)
self.synthesize_output = synthesize_output
self.synthesize_output_model = synthesize_output_model
if synthesize_output and synthesize_output_model is None:
self.synthesize_output_model = ModelFactory.create(
model_platform=ModelPlatformType.DEFAULT,
model_type=ModelType.DEFAULT,
)
logger.warning(
"Warning: No synthesize_output_model provided. "
f"Use `{self.synthesize_output_model.model_type}` to "
"synthesize the output."
)
self.synthesize_output_format: Optional[type[BaseModel]] = None
return_annotation = inspect.signature(self.func).return_annotation
if synthesize_output_format is not None:
self.synthesize_output_format = synthesize_output_format
elif isinstance(return_annotation, type) and issubclass(
return_annotation, BaseModel
):
self.synthesize_output_format = return_annotation
self.synthesize_schema_model = synthesize_schema_model
if synthesize_schema:
if openai_tool_schema:
logger.warning("""The user-defined OpenAI tool schema will be
overridden by the schema assistant model.""")
if self.synthesize_schema_model is None:
self.synthesize_schema_model = ModelFactory.create(
model_platform=ModelPlatformType.DEFAULT,
model_type=ModelType.DEFAULT,
)
logger.warning(
"Warning: No synthesize_schema_model provided. "
f"Use `{self.synthesize_schema_model.model_type}` to "
"synthesize the schema."
)
schema = self.synthesize_openai_tool_schema(
synthesize_schema_max_retries
)
if schema:
self.openai_tool_schema = schema
else:
raise ValueError(
f"Failed to synthesize a valid schema for "
f"{self.func.__name__}."
)
def __call__(self, *args: Any, **kwargs: Any) -> Any:
if self.synthesize_output:
result = self.synthesize_execution_output(args, kwargs)
return result
else:
# Pass the extracted arguments to the indicated function
try:
result = self.func(*args, **kwargs)
return result
except Exception as e:
raise ValueError(
f"Execution of function {self.func.__name__} failed with "
f"arguments {args} and {kwargs}. "
f"Error: {e}"
)
@staticmethod
def validate_openai_tool_schema(
openai_tool_schema: Dict[str, Any],
) -> None:
r"""Validates the OpenAI tool schema against
:obj:`ToolAssistantToolsFunction`.
This function checks if the provided :obj:`openai_tool_schema` adheres
to the specifications required by OpenAI's
:obj:`ToolAssistantToolsFunction`. It ensures that the function
description and parameters are correctly formatted according to JSON
Schema specifications.
Args:
openai_tool_schema (Dict[str, Any]): The OpenAI tool schema to
validate.
Raises:
ValidationError: If the schema does not comply with the
specifications.
SchemaError: If the parameters do not meet JSON Schema reference
specifications.
"""
# Check the type
if not openai_tool_schema["type"]:
raise ValueError("miss `type` in tool schema.")
# Check the function description, if no description then raise warming
if not openai_tool_schema["function"].get("description"):
warnings.warn(f"""Function description is missing for
{openai_tool_schema['function']['name']}. This may
affect the quality of tool calling.""")
# Validate whether parameters
# meet the JSON Schema reference specifications.
# See https://platform.openai.com/docs/guides/gpt/function-calling
# for examples, and the
# https://json-schema.org/understanding-json-schema/ for
# documentation about the format.
parameters = openai_tool_schema["function"]["parameters"]
try:
JSONValidator.check_schema(parameters)
except SchemaError as e:
raise e
# Check the parameter description, if no description then raise warming
properties: Dict[str, Any] = parameters["properties"]
for param_name in properties.keys():
param_dict = properties[param_name]
if "description" not in param_dict:
warnings.warn(f"""Parameter description is missing for
{param_dict}. This may affect the quality of tool
calling.""")
def get_openai_tool_schema(self) -> Dict[str, Any]:
r"""Gets the OpenAI tool schema for this function.
This method returns the OpenAI tool schema associated with this
function, after validating it to ensure it meets OpenAI's
specifications.
Returns:
Dict[str, Any]: The OpenAI tool schema for this function.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema
def set_openai_tool_schema(self, schema: Dict[str, Any]) -> None:
r"""Sets the OpenAI tool schema for this function.
Allows setting a custom OpenAI tool schema for this function.
Args:
schema (Dict[str, Any]): The OpenAI tool schema to set.
"""
self.openai_tool_schema = schema
def get_openai_function_schema(self) -> Dict[str, Any]:
r"""Gets the schema of the function from the OpenAI tool schema.
This method extracts and returns the function-specific part of the
OpenAI tool schema associated with this function.
Returns:
Dict[str, Any]: The schema of the function within the OpenAI tool
schema.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema["function"]
def set_openai_function_schema(
self,
openai_function_schema: Dict[str, Any],
) -> None:
r"""Sets the schema of the function within the OpenAI tool schema.
Args:
openai_function_schema (Dict[str, Any]): The function schema to
set within the OpenAI tool schema.
"""
self.openai_tool_schema["function"] = openai_function_schema
def get_function_name(self) -> str:
r"""Gets the name of the function from the OpenAI tool schema.
Returns:
str: The name of the function.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema["function"]["name"]
def set_function_name(self, name: str) -> None:
r"""Sets the name of the function in the OpenAI tool schema.
Args:
name (str): The name of the function to set.
"""
self.openai_tool_schema["function"]["name"] = name
def get_function_description(self) -> str:
r"""Gets the description of the function from the OpenAI tool
schema.
Returns:
str: The description of the function.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema["function"]["description"]
def set_function_description(self, description: str) -> None:
r"""Sets the description of the function in the OpenAI tool schema.
Args:
description (str): The description for the function.
"""
self.openai_tool_schema["function"]["description"] = description
def get_paramter_description(self, param_name: str) -> str:
r"""Gets the description of a specific parameter from the function
schema.
Args:
param_name (str): The name of the parameter to get the
description.
Returns:
str: The description of the specified parameter.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema["function"]["parameters"]["properties"][
param_name
]["description"]
def set_paramter_description(
self,
param_name: str,
description: str,
) -> None:
r"""Sets the description for a specific parameter in the function
schema.
Args:
param_name (str): The name of the parameter to set the description
for.
description (str): The description for the parameter.
"""
self.openai_tool_schema["function"]["parameters"]["properties"][
param_name
]["description"] = description
def get_parameter(self, param_name: str) -> Dict[str, Any]:
r"""Gets the schema for a specific parameter from the function schema.
Args:
param_name (str): The name of the parameter to get the schema.
Returns:
Dict[str, Any]: The schema of the specified parameter.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema["function"]["parameters"]["properties"][
param_name
]
def set_parameter(self, param_name: str, value: Dict[str, Any]):
r"""Sets the schema for a specific parameter in the function schema.
Args:
param_name (str): The name of the parameter to set the schema for.
value (Dict[str, Any]): The schema to set for the parameter.
"""
try:
JSONValidator.check_schema(value)
except SchemaError as e:
raise e
self.openai_tool_schema["function"]["parameters"]["properties"][
param_name
] = value
def synthesize_openai_tool_schema(
self,
max_retries: Optional[int] = None,
) -> Dict[str, Any]:
r"""Synthesizes an OpenAI tool schema for the specified function.
This method uses a language model (LLM) to synthesize the OpenAI tool
schema for the specified function by first generating a docstring and
then creating a schema based on the function's source code. The
schema synthesis and validation process is retried up to
`max_retries` times in case of failure.
Args:
max_retries (Optional[int], optional): The maximum number of
retries for schema synthesis and validation if the process
fails. (default: :obj:`None`)
Returns:
Dict[str, Any]: The synthesis OpenAI tool schema for the function.
Raises:
ValueError: If schema synthesis or validation fails after the
maximum number of retries, a ValueError is raised, prompting
manual schema setting.
"""
code = getsource(self.func)
retries = 0
if max_retries is None:
max_retries = 0
# Retry loop to handle schema synthesis and validation
while retries <= max_retries:
try:
# Generate the docstring and the schema
docstring = generate_docstring(
code, self.synthesize_schema_model
)
self.func.__doc__ = docstring
schema = get_openai_tool_schema(self.func)
# Validate the schema
self.validate_openai_tool_schema(schema)
return schema
except Exception as e:
retries += 1
if retries == max_retries:
raise ValueError(
f"Failed to synthesize the OpenAI tool Schema after "
f"{max_retries} retries. "
f"Please set the OpenAI tool schema for "
f"function {self.func.__name__} manually."
) from e
logger.warning("Schema validation failed. Retrying...")
return {}
def synthesize_execution_output(
self,
args: Optional[tuple[Any, ...]] = None,
kwargs: Optional[Dict[str, Any]] = None,
) -> Any:
r"""Synthesizes the output of the function based on the provided
positional arguments and keyword arguments.
Args:
args (Optional[tuple]): Positional arguments to pass to the
function during synthesis. (default: :obj:`None`)
kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass to the
function during synthesis. (default: :obj:`None`)
Returns:
Any: Synthesized output from the function execution. If no
synthesis model is provided, a warning is logged.
"""
import textwrap
# Retrieve the function source code
function_string = inspect.getsource(self.func)
# Check and update docstring if necessary
if self.func.__doc__ is not None:
function_string = textwrap.dedent(function_string)
tree = ast.parse(function_string)
func_node = (
tree.body[0]
if isinstance(tree.body[0], ast.FunctionDef)
else None
)
if func_node:
existing_docstring = ast.get_docstring(func_node)
if existing_docstring != self.func.__doc__:
func_node.body[0] = ast.Expr(
value=ast.Constant(value=self.func.__doc__, kind=None)
)
function_string = ast.unparse(tree)
# Append the args and kwargs information to the function string
if args:
function_string += f"\nargs:\n{list(args)}"
if kwargs:
function_string += f"\nkwargs:\n{kwargs}"
# Define the assistant system message
assistant_sys_msg = '''
**Role:** AI Assistant specialized in synthesizing tool execution outputs
without actual execution.
**Capabilities:**
- Analyzes function to understand their
purpose and expected outputs.
- Generates synthetic outputs based on the function logic.
- Ensures the synthesized output is contextually accurate and aligns with the
function's intended behavior.
**Instructions:**
1. **Input:** Provide the function code, function docstring, args, and kwargs.
2. **Output:** Synthesize the expected output of the function based on the
provided args and kwargs.
**Example:**
- **User Input:**
def sum(a, b, c=0):
"""Adds three numbers together."""
return a + b + c
- **Input Arguments:**
args: (1, 2)
kwargs: {"c": 3}
- **Output:**
6
**Note:**
- Just return the synthesized output of the function without any explanation.
- The output should be in plain text without any formatting.
'''
# Initialize the synthesis agent
synthesis_agent = ChatAgent(
assistant_sys_msg,
model=self.synthesize_output_model,
)
# User message combining function string and additional context
user_msg = function_string
response = synthesis_agent.step(
user_msg,
response_format=self.synthesize_output_format,
)
return response.msg.content
@property
def parameters(self) -> Dict[str, Any]:
r"""Getter method for the property :obj:`parameters`.
Returns:
Dict[str, Any]: the dictionary containing information of
parameters of this function.
"""
self.validate_openai_tool_schema(self.openai_tool_schema)
return self.openai_tool_schema["function"]["parameters"]["properties"]
@parameters.setter
def parameters(self, value: Dict[str, Any]) -> None:
r"""Setter method for the property :obj:`parameters`. It will
firstly check if the input parameters schema is valid. If invalid,
the method will raise :obj:`jsonschema.exceptions.SchemaError`.
Args:
value (Dict[str, Any]): the new dictionary value for the
function's parameters.
"""
try:
JSONValidator.check_schema(value)
except SchemaError as e:
raise e
self.openai_tool_schema["function"]["parameters"]["properties"] = value
|