File size: 11,571 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from camel.loaders.chunkr_reader import ChunkrReader
from camel.toolkits.base import BaseToolkit
from camel.toolkits.function_tool import FunctionTool
from camel.toolkits import ImageAnalysisToolkit, AudioAnalysisToolkit, VideoAnalysisToolkit, ExcelToolkit
from camel.messages import BaseMessage
from camel.models import ModelFactory
from camel.types import ModelType
from camel.models import OpenAIModel, DeepSeekModel
from docx2markdown._docx_to_markdown import docx_to_markdown
from chunkr_ai import Chunkr
import openai
import requests
import mimetypes
import json
from retry import retry
from typing import List, Dict, Any, Optional, Tuple, Literal
from PIL import Image
from io import BytesIO
from loguru import logger
from bs4 import BeautifulSoup
import asyncio
from urllib.parse import urlparse, urljoin
import os
import subprocess
import xmltodict
import asyncio
import nest_asyncio
nest_asyncio.apply()


class DocumentProcessingToolkit(BaseToolkit):
    r"""A class representing a toolkit for processing document and return the content of the document.

    This class provides method for processing docx, pdf, pptx, etc. It cannot process excel files.
    """
    def __init__(self, cache_dir: Optional[str] = None):
        self.image_tool = ImageAnalysisToolkit()
        self.audio_tool = AudioAnalysisToolkit()
        self.excel_tool = ExcelToolkit()

        self.cache_dir = "tmp/"
        if cache_dir:
            self.cache_dir = cache_dir
    
    @retry((requests.RequestException))
    def extract_document_content(self, document_path: str) -> Tuple[bool, str]:
        r"""Extract the content of a given document (or url) and return the processed text.
        It may filter out some information, resulting in inaccurate content.

        Args:
            document_path (str): The path of the document to be processed, either a local path or a URL. It can process image, audio files, zip files and webpages, etc.

        Returns:
            Tuple[bool, str]: A tuple containing a boolean indicating whether the document was processed successfully, and the content of the document (if success).
        """
        logger.debug(f"Calling extract_document_content function with document_path=`{document_path}`")

        if any(document_path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png']):
            res = self.image_tool.ask_question_about_image(document_path, "Please make a detailed caption about the image.")
            return True, res
        
        if any(document_path.endswith(ext) for ext in ['.mp3', '.wav']):
            res = self.audio_tool.ask_question_about_audio(document_path, "Please transcribe the audio content to text.")
            return True, res
        
        if any(document_path.endswith(ext) for ext in ['xls', 'xlsx']):
            res = self.excel_tool.extract_excel_content(document_path)
            return True, res

        if any(document_path.endswith(ext) for ext in ['zip']): 
            extracted_files = self._unzip_file(document_path)
            return True, f"The extracted files are: {extracted_files}"

        if any(document_path.endswith(ext) for ext in ['json', 'jsonl', 'jsonld']):
            with open(document_path, 'r', encoding='utf-8') as f:
                content = json.load(f)
            f.close()
            return True, content
        
        if any(document_path.endswith(ext) for ext in ['py']):
            with open(document_path, 'r', encoding='utf-8') as f:
                content = f.read()
            f.close()
            return True, content

        
        if any(document_path.endswith(ext) for ext in ['xml']):
            data = None
            with open(document_path, 'r', encoding='utf-8') as f:
                content = f.read()
            f.close()

            try:
                data = xmltodict.parse(content)
                logger.debug(f"The extracted xml data is: {data}")
                return True, data
            
            except Exception as e:
                logger.debug(f"The raw xml data is: {content}")
                return True, content


        if self._is_webpage(document_path):
            extracted_text = self._extract_webpage_content(document_path)
            return True, extracted_text
        

        else:
            # judge if url
            parsed_url = urlparse(document_path)
            is_url = all([parsed_url.scheme, parsed_url.netloc])
            if not is_url:
                if not os.path.exists(document_path):
                    return f"Document not found at path: {document_path}."

            # if is docx file, use docx2markdown to convert it
            if document_path.endswith(".docx"):
                if is_url:
                    tmp_path = self._download_file(document_path)
                else:
                    tmp_path = document_path
                
                file_name = os.path.basename(tmp_path)
                md_file_path = f"{file_name}.md"
                docx_to_markdown(tmp_path, md_file_path)

                # load content of md file
                with open(md_file_path, "r") as f:
                    extracted_text = f.read()
                f.close()
                return True, extracted_text
            try:
                # result = asyncio.run(self._extract_content_with_chunkr(document_path))
                raise ValueError("Chunkr is not available.")
                return True, result

            except Exception as e:
                logger.warning(f"Error occurred while using chunkr to process document: {e}")
                if document_path.endswith(".pdf"):
                    # try using pypdf to extract text from pdf
                    try:
                        from PyPDF2 import PdfReader
                        if is_url:
                            tmp_path = self._download_file(document_path)
                            document_path = tmp_path

                        with open(document_path, 'rb') as f:
                            reader = PdfReader(f)
                            extracted_text = ""
                            for page in reader.pages:
                                extracted_text += page.extract_text()
                            
                        return True, extracted_text

                    except Exception as e:
                        logger.error(f"Error occurred while processing pdf: {e}")
                        return False, f"Error occurred while processing pdf: {e}"

                logger.error(f"Error occurred while processing document: {e}")
                return False, f"Error occurred while processing document: {e}"

    def _is_webpage(self, url: str) -> bool:
        r"""Judge whether the given URL is a webpage."""
        try:
            parsed_url = urlparse(url)
            is_url = all([parsed_url.scheme, parsed_url.netloc])
            if not is_url:
                return False

            path = parsed_url.path
            file_type, _ = mimetypes.guess_type(path)
            if 'text/html' in file_type:
                return True
            
            response = requests.head(url, allow_redirects=True, timeout=10)
            content_type = response.headers.get("Content-Type", "").lower()
            
            if "text/html" in content_type:
                return True
            else:
                return False
        
        except requests.exceptions.RequestException as e:
            # raise RuntimeError(f"Error while checking the URL: {e}")
            logger.warning(f"Error while checking the URL: {e}")
            return False

        except TypeError:
            return True
    

    @retry(requests.RequestException)
    async def _extract_content_with_chunkr(self, document_path: str, output_format: Literal['json', 'markdown'] = 'markdown') -> str:
        
        chunkr = Chunkr(api_key=os.getenv("CHUNKR_API_KEY"))
        
        result = await chunkr.upload(document_path)
        
        # result = chunkr.upload(document_path)

        if result.status == "Failed":
            logger.error(f"Error while processing document {document_path}: {result.message}")
            return f"Error while processing document: {result.message}"
        
        # extract document name
        document_name = os.path.basename(document_path)
        output_file_path: str

        if output_format == 'json':
            output_file_path = f"{document_name}.json"
            result.json(output_file_path)

        elif output_format == 'markdown':
            output_file_path = f"{document_name}.md"
            result.markdown(output_file_path)

        else:
            return "Invalid output format."
        
        with open(output_file_path, "r") as f:
            extracted_text = f.read()
        f.close()
        return extracted_text


    @retry(requests.RequestException, delay=30, backoff=2, max_delay=180)
    def _extract_webpage_content(self, url: str) -> str:
        api_key = os.getenv("FIRECRAWL_API_KEY")
        from firecrawl import FirecrawlApp

        # Initialize the FirecrawlApp with your API key
        app = FirecrawlApp(api_key=api_key)

        data = app.crawl_url(
            url,
            params={
                'limit': 1,
                'scrapeOptions': {'formats': ['markdown']}
            }
        )
        logger.debug(f"Extractred data from {url}: {data}")
        if len(data['data']) == 0:
            if data['success'] == True:
                return "No content found on the webpage."
            else:
                return "Error while crawling the webpage."

        return str(data['data'][0]['markdown'])

    def _download_file(self, url: str):
        r"""Download a file from a URL and save it to the cache directory."""
        try:
            response = requests.get(url, stream=True)
            response.raise_for_status() 
            file_name = url.split("/")[-1]  

            file_path = os.path.join(self.cache_dir, file_name)

            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=8192):
                    file.write(chunk)
            
            return file_path

        except requests.exceptions.RequestException as e:
            print(f"Error downloading the file: {e}")


    def _get_formatted_time(self) -> str:
        import time
        return time.strftime("%m%d%H%M")

    
    def _unzip_file(self, zip_path: str) -> List[str]:
        if not zip_path.endswith('.zip'):
            raise ValueError("Only .zip files are supported")
        
        zip_name = os.path.splitext(os.path.basename(zip_path))[0]
        extract_path = os.path.join(self.cache_dir, zip_name)
        os.makedirs(extract_path, exist_ok=True)

        try:
            subprocess.run(["unzip", "-o", zip_path, "-d", extract_path], check=True)
        except subprocess.CalledProcessError as e:
            raise RuntimeError(f"Failed to unzip file: {e}")

        extracted_files = []
        for root, _, files in os.walk(extract_path):
            for file in files:
                extracted_files.append(os.path.join(root, file))
        
        return extracted_files


    def get_tools(self) -> List[FunctionTool]:
        r"""Returns a list of FunctionTool objects representing the functions in the toolkit.

        Returns:
            List[FunctionTool]: A list of FunctionTool objects representing the functions in the toolkit.
        """
        return [
            FunctionTool(self.extract_document_content),
        ]