File size: 10,738 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import warnings
from io import IOBase
from typing import IO, TYPE_CHECKING, Any, Dict, List, Optional, Union
from urllib.parse import urlparse
from camel.embeddings import BaseEmbedding, OpenAIEmbedding
from camel.loaders import UnstructuredIO
from camel.retrievers.base import BaseRetriever
from camel.storages import (
BaseVectorStorage,
QdrantStorage,
VectorDBQuery,
VectorRecord,
)
from camel.utils import Constants
if TYPE_CHECKING:
from unstructured.documents.elements import Element
class VectorRetriever(BaseRetriever):
r"""An implementation of the `BaseRetriever` by using vector storage and
embedding model.
This class facilitates the retriever of relevant information using a
query-based approach, backed by vector embeddings.
Attributes:
embedding_model (BaseEmbedding): Embedding model used to generate
vector embeddings.
storage (BaseVectorStorage): Vector storage to query.
unstructured_modules (UnstructuredIO): A module for parsing files and
URLs and chunking content based on specified parameters.
"""
def __init__(
self,
embedding_model: Optional[BaseEmbedding] = None,
storage: Optional[BaseVectorStorage] = None,
) -> None:
r"""Initializes the retriever class with an optional embedding model.
Args:
embedding_model (Optional[BaseEmbedding]): The embedding model
instance. Defaults to `OpenAIEmbedding` if not provided.
storage (BaseVectorStorage): Vector storage to query.
"""
self.embedding_model = embedding_model or OpenAIEmbedding()
self.storage = (
storage
if storage is not None
else QdrantStorage(
vector_dim=self.embedding_model.get_output_dim()
)
)
self.uio: UnstructuredIO = UnstructuredIO()
def process(
self,
content: Union[str, "Element", IO[bytes]],
chunk_type: str = "chunk_by_title",
max_characters: int = 500,
embed_batch: int = 50,
should_chunk: bool = True,
extra_info: Optional[dict] = None,
metadata_filename: Optional[str] = None,
**kwargs: Any,
) -> None:
r"""Processes content from local file path, remote URL, string
content, Element object, or a binary file object, divides it into
chunks by using `Unstructured IO`, and stores their embeddings in the
specified vector storage.
Args:
content (Union[str, Element, IO[bytes]]): Local file path, remote
URL, string content, Element object, or a binary file object.
chunk_type (str): Type of chunking going to apply. Defaults to
"chunk_by_title".
max_characters (int): Max number of characters in each chunk.
Defaults to `500`.
embed_batch (int): Size of batch for embeddings. Defaults to `50`.
should_chunk (bool): If True, divide the content into chunks,
otherwise skip chunking. Defaults to True.
extra_info (Optional[dict]): Extra information to be added
to the payload. Defaults to None.
metadata_filename (Optional[str]): The metadata filename to be
used for storing metadata. Defaults to None.
**kwargs (Any): Additional keyword arguments for content parsing.
"""
def sanitize_text(text: str):
if not text:
return " "
return text
from unstructured.documents.elements import Element
if isinstance(content, Element):
elements = [content]
elif isinstance(content, IOBase):
elements = (
self.uio.parse_bytes(
file=content, metadata_filename=metadata_filename, **kwargs
)
or []
)
elif isinstance(content, str):
# Check if the content is URL
parsed_url = urlparse(content)
is_url = all([parsed_url.scheme, parsed_url.netloc])
if is_url or os.path.exists(content):
elements = (
self.uio.parse_file_or_url(
input_path=content,
metadata_filename=metadata_filename,
**kwargs,
)
or []
)
else:
elements = [
self.uio.create_element_from_text(
text=content,
filename=metadata_filename,
)
]
if not elements:
warnings.warn(
f"No elements were extracted from the content: {content}"
)
else:
# Chunk the content if required
chunks = (
self.uio.chunk_elements(
chunk_type=chunk_type,
elements=elements,
max_characters=max_characters,
)
if should_chunk
else elements
)
# Process chunks in batches and store embeddings
for i in range(0, len(chunks), embed_batch):
batch_chunks = chunks[i : i + embed_batch]
batch_vectors = self.embedding_model.embed_list(
objs=[sanitize_text(str(chunk)) for chunk in batch_chunks]
)
records = []
# Prepare the payload for each vector record, includes the
# content path, chunk metadata, and chunk text
for vector, chunk in zip(batch_vectors, batch_chunks):
if isinstance(content, str):
content_path_info = {"content path": content}
elif isinstance(content, IOBase):
content_path_info = {"content path": "From file bytes"}
elif isinstance(content, Element):
content_path_info = {
"content path": content.metadata.file_directory
or ""
}
chunk_metadata = {"metadata": chunk.metadata.to_dict()}
# Remove the 'orig_elements' key if it exists
chunk_metadata["metadata"].pop("orig_elements", "")
chunk_metadata["extra_info"] = extra_info or {}
chunk_text = {"text": str(chunk)}
combined_dict = {
**content_path_info,
**chunk_metadata,
**chunk_text,
}
records.append(
VectorRecord(vector=vector, payload=combined_dict)
)
self.storage.add(records=records)
def query(
self,
query: str,
top_k: int = Constants.DEFAULT_TOP_K_RESULTS,
similarity_threshold: float = Constants.DEFAULT_SIMILARITY_THRESHOLD,
) -> List[Dict[str, Any]]:
r"""Executes a query in vector storage and compiles the retrieved
results into a dictionary.
Args:
query (str): Query string for information retriever.
similarity_threshold (float, optional): The similarity threshold
for filtering results. Defaults to
`DEFAULT_SIMILARITY_THRESHOLD`.
top_k (int, optional): The number of top results to return during
retriever. Must be a positive integer. Defaults to
`DEFAULT_TOP_K_RESULTS`.
Returns:
List[Dict[str, Any]]: Concatenated list of the query results.
Raises:
ValueError: If 'top_k' is less than or equal to 0, if vector
storage is empty, if payload of vector storage is None.
"""
if top_k <= 0:
raise ValueError("top_k must be a positive integer.")
# Load the storage incase it's hosted remote
self.storage.load()
query_vector = self.embedding_model.embed(obj=query)
db_query = VectorDBQuery(query_vector=query_vector, top_k=top_k)
query_results = self.storage.query(query=db_query)
# If no results found, raise an error
if not query_results:
raise ValueError(
"Query result is empty, please check if "
"the vector storage is empty."
)
if query_results[0].record.payload is None:
raise ValueError(
"Payload of vector storage is None, please check the "
"collection."
)
# format the results
formatted_results = []
for result in query_results:
if (
result.similarity >= similarity_threshold
and result.record.payload is not None
):
result_dict = {
'similarity score': str(result.similarity),
'content path': result.record.payload.get(
'content path', ''
),
'metadata': result.record.payload.get('metadata', {}),
'extra_info': result.record.payload.get('extra_info', {}),
'text': result.record.payload.get('text', ''),
}
formatted_results.append(result_dict)
content_path = query_results[0].record.payload.get('content path', '')
if not formatted_results:
return [
{
'text': (
f"No suitable information retrieved "
f"from {content_path} with similarity_threshold"
f" = {similarity_threshold}."
)
}
]
return formatted_results
|