File size: 5,149 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, Dict, List

import numpy as np

from camel.loaders import UnstructuredIO
from camel.retrievers import BaseRetriever
from camel.utils import dependencies_required

DEFAULT_TOP_K_RESULTS = 1


class BM25Retriever(BaseRetriever):
    r"""An implementation of the `BaseRetriever` using the `BM25` model.

    This class facilitates the retriever of relevant information using a
    query-based approach, it ranks documents based on the occurrence and
    frequency of the query terms.

    Attributes:
        bm25 (BM25Okapi): An instance of the BM25Okapi class used for
            calculating document scores.
        content_input_path (str): The path to the content that has been
            processed and stored.
        unstructured_modules (UnstructuredIO): A module for parsing files and
            URLs and chunking content based on specified parameters.

    References:
        https://github.com/dorianbrown/rank_bm25
    """

    @dependencies_required('rank_bm25')
    def __init__(self) -> None:
        r"""Initializes the BM25Retriever."""
        from rank_bm25 import BM25Okapi

        self.bm25: BM25Okapi = None
        self.content_input_path: str = ""
        self.unstructured_modules: UnstructuredIO = UnstructuredIO()

    def process(
        self,
        content_input_path: str,
        chunk_type: str = "chunk_by_title",
        **kwargs: Any,
    ) -> None:
        r"""Processes content from a file or URL, divides it into chunks by
        using `Unstructured IO`,then stored internally. This method must be
        called before executing queries with the retriever.

        Args:
            content_input_path (str): File path or URL of the content to be
                processed.
            chunk_type (str): Type of chunking going to apply. Defaults to
                "chunk_by_title".
            **kwargs (Any): Additional keyword arguments for content parsing.
        """
        from rank_bm25 import BM25Okapi

        # Load and preprocess documents
        self.content_input_path = content_input_path
        elements = self.unstructured_modules.parse_file_or_url(
            content_input_path, **kwargs
        )
        if elements:
            self.chunks = self.unstructured_modules.chunk_elements(
                chunk_type=chunk_type, elements=elements
            )

            # Convert chunks to a list of strings for tokenization
            tokenized_corpus = [str(chunk).split(" ") for chunk in self.chunks]
            self.bm25 = BM25Okapi(tokenized_corpus)
        else:
            self.bm25 = None

    def query(
        self,
        query: str,
        top_k: int = DEFAULT_TOP_K_RESULTS,
    ) -> List[Dict[str, Any]]:
        r"""Executes a query and compiles the results.

        Args:
            query (str): Query string for information retriever.
            top_k (int, optional): The number of top results to return during
                retriever. Must be a positive integer. Defaults to
                `DEFAULT_TOP_K_RESULTS`.

        Returns:
            List[Dict[str]]: Concatenated list of the query results.

        Raises:
            ValueError: If `top_k` is less than or equal to 0, if the BM25
                model has not been initialized by calling `process`
                first.
        """

        if top_k <= 0:
            raise ValueError("top_k must be a positive integer.")
        if self.bm25 is None or not self.chunks:
            raise ValueError(
                "BM25 model is not initialized. Call `process` first."
            )

        # Preprocess query similarly to how documents were processed
        processed_query = query.split(" ")
        # Retrieve documents based on BM25 scores
        scores = self.bm25.get_scores(processed_query)

        top_k_indices = np.argpartition(scores, -top_k)[-top_k:]

        formatted_results = []
        for i in top_k_indices:
            result_dict = {
                'similarity score': scores[i],
                'content path': self.content_input_path,
                'metadata': self.chunks[i].metadata.to_dict(),
                'text': str(self.chunks[i]),
            }
            formatted_results.append(result_dict)

        # Sort the list of dictionaries by 'similarity score' from high to low
        formatted_results.sort(
            key=lambda x: x['similarity score'], reverse=True
        )

        return formatted_results