File size: 9,603 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import re
import uuid
from typing import (
TYPE_CHECKING,
Collection,
List,
Optional,
Sequence,
Tuple,
Union,
)
from camel.embeddings import BaseEmbedding, OpenAIEmbedding
from camel.retrievers.vector_retriever import VectorRetriever
from camel.storages import (
BaseVectorStorage,
MilvusStorage,
QdrantStorage,
)
from camel.types import StorageType
from camel.utils import Constants
if TYPE_CHECKING:
from unstructured.documents.elements import Element
class AutoRetriever:
r"""Facilitates the automatic retrieval of information using a
query-based approach with pre-defined elements.
Attributes:
url_and_api_key (Optional[Tuple[str, str]]): URL and API key for
accessing the vector storage remotely.
vector_storage_local_path (Optional[str]): Local path for vector
storage, if applicable.
storage_type (Optional[StorageType]): The type of vector storage to
use. Defaults to `StorageType.QDRANT`.
embedding_model (Optional[BaseEmbedding]): Model used for embedding
queries and documents. Defaults to `OpenAIEmbedding()`.
"""
def __init__(
self,
url_and_api_key: Optional[Tuple[str, str]] = None,
vector_storage_local_path: Optional[str] = None,
storage_type: Optional[StorageType] = None,
embedding_model: Optional[BaseEmbedding] = None,
):
self.storage_type = storage_type or StorageType.QDRANT
self.embedding_model = embedding_model or OpenAIEmbedding()
self.vector_storage_local_path = vector_storage_local_path
self.url_and_api_key = url_and_api_key
def _initialize_vector_storage(
self,
collection_name: Optional[str] = None,
) -> BaseVectorStorage:
r"""Sets up and returns a vector storage instance with specified
parameters.
Args:
collection_name (Optional[str]): Name of the collection in the
vector storage.
Returns:
BaseVectorStorage: Configured vector storage instance.
"""
if self.storage_type == StorageType.MILVUS:
if self.url_and_api_key is None:
raise ValueError(
"URL and API key required for Milvus storage are not"
"provided."
)
return MilvusStorage(
vector_dim=self.embedding_model.get_output_dim(),
collection_name=collection_name,
url_and_api_key=self.url_and_api_key,
)
if self.storage_type == StorageType.QDRANT:
return QdrantStorage(
vector_dim=self.embedding_model.get_output_dim(),
collection_name=collection_name,
path=self.vector_storage_local_path,
url_and_api_key=self.url_and_api_key,
)
raise ValueError(
f"Unsupported vector storage type: {self.storage_type}"
)
def _collection_name_generator(
self, content: Union[str, "Element"]
) -> str:
r"""Generates a valid collection name from a given file path or URL.
Args:
content (Union[str, Element]): Local file path, remote URL,
string content or Element object.
Returns:
str: A sanitized, valid collection name suitable for use.
"""
from unstructured.documents.elements import Element
if isinstance(content, Element):
content = content.metadata.file_directory or str(uuid.uuid4())
collection_name = re.sub(r'[^a-zA-Z0-9]', '', content)[:20]
return collection_name
def run_vector_retriever(
self,
query: str,
contents: Union[str, List[str], "Element", List["Element"]],
top_k: int = Constants.DEFAULT_TOP_K_RESULTS,
similarity_threshold: float = Constants.DEFAULT_SIMILARITY_THRESHOLD,
return_detailed_info: bool = False,
max_characters: int = 500,
) -> dict[str, Sequence[Collection[str]]]:
r"""Executes the automatic vector retriever process using vector
storage.
Args:
query (str): Query string for information retriever.
contents (Union[str, List[str], Element, List[Element]]): Local
file paths, remote URLs, string contents or Element objects.
top_k (int, optional): The number of top results to return during
retrieve. Must be a positive integer. Defaults to
`DEFAULT_TOP_K_RESULTS`.
similarity_threshold (float, optional): The similarity threshold
for filtering results. Defaults to
`DEFAULT_SIMILARITY_THRESHOLD`.
return_detailed_info (bool, optional): Whether to return detailed
information including similarity score, content path and
metadata. Defaults to `False`.
max_characters (int): Max number of characters in each chunk.
Defaults to `500`.
Returns:
dict[str, Sequence[Collection[str]]]: By default, returns
only the text information. If `return_detailed_info` is
`True`, return detailed information including similarity
score, content path and metadata.
Raises:
ValueError: If there's an vector storage existing with content
name in the vector path but the payload is None. If
`contents` is empty.
RuntimeError: If any errors occur during the retrieve process.
"""
from unstructured.documents.elements import Element
if not contents:
raise ValueError("content cannot be empty.")
# Normalize contents to a list
if isinstance(contents, str):
contents = [contents]
elif isinstance(contents, Element):
contents = [contents]
elif not isinstance(contents, list):
raise ValueError(
"contents must be a string, Element, or a list of them."
)
all_retrieved_info = []
for content in contents:
# Generate a valid collection name
collection_name = self._collection_name_generator(content)
try:
vector_storage_instance = self._initialize_vector_storage(
collection_name
)
if vector_storage_instance.status().vector_count == 0:
# Clear the vector storage
vector_storage_instance.clear()
# Process and store the content to the vector storage
vr = VectorRetriever(
storage=vector_storage_instance,
embedding_model=self.embedding_model,
)
vr.process(content=content, max_characters=max_characters)
else:
vr = VectorRetriever(
storage=vector_storage_instance,
embedding_model=self.embedding_model,
)
# Retrieve info by given query from the vector storage
retrieved_info = vr.query(query, top_k, similarity_threshold)
all_retrieved_info.extend(retrieved_info)
except Exception as e:
raise RuntimeError(
f"Error in auto vector retriever processing: {e!s}"
) from e
# Split records into those with and without a 'similarity_score'
# Records with 'similarity_score' lower than 'similarity_threshold'
# will not have a 'similarity_score' in the output content
with_score = [
info for info in all_retrieved_info if 'similarity score' in info
]
without_score = [
info
for info in all_retrieved_info
if 'similarity score' not in info
]
# Sort only the list with scores
with_score_sorted = sorted(
with_score, key=lambda x: x['similarity score'], reverse=True
)
# Merge back the sorted scored items with the non-scored items
all_retrieved_info_sorted = with_score_sorted + without_score
# Select the 'top_k' results
all_retrieved_info = all_retrieved_info_sorted[:top_k]
text_retrieved_info = [item['text'] for item in all_retrieved_info]
detailed_info = {
"Original Query": query,
"Retrieved Context": all_retrieved_info,
}
text_info = {
"Original Query": query,
"Retrieved Context": text_retrieved_info,
}
# breakpoint()
if return_detailed_info:
return detailed_info
else:
return text_info
|