File size: 5,649 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import subprocess
from typing import Any, Dict, List, Optional, Union

from openai import OpenAI, Stream

from camel.configs import VLLM_API_PARAMS, VLLMConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
)
from camel.utils import BaseTokenCounter, OpenAITokenCounter


# flake8: noqa: E501
class VLLMModel(BaseModelBackend):
    r"""vLLM service interface.

    Args:
        model_type (Union[ModelType, str]): Model for which a backend is
            created.
        model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
            that will be fed into:obj:`openai.ChatCompletion.create()`. If
            :obj:`None`, :obj:`VLLMConfig().as_dict()` will be used.
            (default: :obj:`None`)
        api_key (Optional[str], optional): The API key for authenticating with
            the model service. vLLM doesn't need API key, it would be ignored
            if set. (default: :obj:`None`)
        url (Optional[str], optional): The url to the model service. If not
            provided, :obj:`"http://localhost:8000/v1"` will be used.
            (default: :obj:`None`)
        token_counter (Optional[BaseTokenCounter], optional): Token counter to
            use for the model. If not provided, :obj:`OpenAITokenCounter(
            ModelType.GPT_4O_MINI)` will be used.
            (default: :obj:`None`)

    References:
        https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html
    """

    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
    ) -> None:
        if model_config_dict is None:
            model_config_dict = VLLMConfig().as_dict()
        url = url or os.environ.get("VLLM_BASE_URL")
        super().__init__(
            model_type, model_config_dict, api_key, url, token_counter
        )
        if not self._url:
            self._start_server()
        # Use OpenAI cilent as interface call vLLM
        self._client = OpenAI(
            timeout=60,
            max_retries=3,
            api_key="Set-but-ignored",  # required but ignored
            base_url=self._url,
        )

    def _start_server(self) -> None:
        r"""Starts the vllm server in a subprocess."""
        try:
            subprocess.Popen(
                ["vllm", "server", "--port", "8000"],
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
            )
            self._url = "http://localhost:8000/v1"
            print(
                f"vllm server started on {self._url} "
                f"for {self.model_type} model."
            )
        except Exception as e:
            print(f"Failed to start vllm server: {e}.")

    @property
    def token_counter(self) -> BaseTokenCounter:
        r"""Initialize the token counter for the model backend.

        Returns:
            BaseTokenCounter: The token counter following the model's
                tokenization style.
        """
        if not self._token_counter:
            self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
        return self._token_counter

    def check_model_config(self):
        r"""Check whether the model configuration contains any
        unexpected arguments to vLLM API.

        Raises:
            ValueError: If the model configuration dictionary contains any
                unexpected arguments to OpenAI API.
        """
        for param in self.model_config_dict:
            if param not in VLLM_API_PARAMS:
                raise ValueError(
                    f"Unexpected argument `{param}` is "
                    "input into vLLM model backend."
                )

    def run(
        self,
        messages: List[OpenAIMessage],
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        r"""Runs inference of OpenAI chat completion.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.

        Returns:
            Union[ChatCompletion, Stream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `Stream[ChatCompletionChunk]` in the stream mode.
        """

        response = self._client.chat.completions.create(
            messages=messages,
            model=self.model_type,
            **self.model_config_dict,
        )
        return response

    @property
    def stream(self) -> bool:
        r"""Returns whether the model is in stream mode, which sends partial
        results each time.

        Returns:
            bool: Whether the model is in stream mode.
        """
        return self.model_config_dict.get('stream', False)