File size: 14,479 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import os
import time
import uuid
from typing import Any, Dict, List, Optional, Union

import httpx
from openai import OpenAI, Stream

from camel.configs import (
    SAMBA_CLOUD_API_PARAMS,
    SAMBA_VERSE_API_PARAMS,
    SambaCloudAPIConfig,
)
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    CompletionUsage,
    ModelType,
)
from camel.utils import (
    BaseTokenCounter,
    OpenAITokenCounter,
    api_keys_required,
)

try:
    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import LLMEvent, record
    else:
        raise ImportError
except (ImportError, AttributeError):
    LLMEvent = None


class SambaModel(BaseModelBackend):
    r"""SambaNova service interface.

    Args:
        model_type (Union[ModelType, str]): Model for which a SambaNova backend
            is created. Supported models via SambaNova Cloud:
            `https://community.sambanova.ai/t/supported-models/193`.
            Supported models via SambaVerse API is listed in
            `https://sambaverse.sambanova.ai/models`.
        model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
            that will be fed into:obj:`openai.ChatCompletion.create()`. If
            :obj:`None`, :obj:`SambaCloudAPIConfig().as_dict()` will be used.
            (default: :obj:`None`)
        api_key (Optional[str], optional): The API key for authenticating
            with the SambaNova service. (default: :obj:`None`)
        url (Optional[str], optional): The url to the SambaNova service.
            Current support SambaVerse API:
            :obj:`"https://sambaverse.sambanova.ai/api/predict"` and
            SambaNova Cloud:
            :obj:`"https://api.sambanova.ai/v1"` (default: :obj:`https://api.
            sambanova.ai/v1`)
        token_counter (Optional[BaseTokenCounter], optional): Token counter to
            use for the model. If not provided, :obj:`OpenAITokenCounter(
            ModelType.GPT_4O_MINI)` will be used.
    """

    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
    ) -> None:
        if model_config_dict is None:
            model_config_dict = SambaCloudAPIConfig().as_dict()
        api_key = api_key or os.environ.get("SAMBA_API_KEY")
        url = url or os.environ.get(
            "SAMBA_API_BASE_URL",
            "https://api.sambanova.ai/v1",
        )
        super().__init__(
            model_type, model_config_dict, api_key, url, token_counter
        )

        if self._url == "https://api.sambanova.ai/v1":
            self._client = OpenAI(
                timeout=60,
                max_retries=3,
                base_url=self._url,
                api_key=self._api_key,
            )

    @property
    def token_counter(self) -> BaseTokenCounter:
        r"""Initialize the token counter for the model backend.

        Returns:
            BaseTokenCounter: The token counter following the model's
                tokenization style.
        """
        if not self._token_counter:
            self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
        return self._token_counter

    def check_model_config(self):
        r"""Check whether the model configuration contains any
        unexpected arguments to SambaNova API.

        Raises:
            ValueError: If the model configuration dictionary contains any
                unexpected arguments to SambaNova API.
        """
        if self._url == "https://sambaverse.sambanova.ai/api/predict":
            for param in self.model_config_dict:
                if param not in SAMBA_VERSE_API_PARAMS:
                    raise ValueError(
                        f"Unexpected argument `{param}` is "
                        "input into SambaVerse API."
                    )

        elif self._url == "https://api.sambanova.ai/v1":
            for param in self.model_config_dict:
                if param not in SAMBA_CLOUD_API_PARAMS:
                    raise ValueError(
                        f"Unexpected argument `{param}` is "
                        "input into SambaCloud API."
                    )

        else:
            raise ValueError(
                f"{self._url} is not supported, please check the url to the"
                " SambaNova service"
            )

    @api_keys_required("SAMBA_API_KEY")
    def run(  # type: ignore[misc]
        self, messages: List[OpenAIMessage]
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        r"""Runs SambaNova's service.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.

        Returns:
            Union[ChatCompletion, Stream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `Stream[ChatCompletionChunk]` in the stream mode.
        """
        if "tools" in self.model_config_dict:
            del self.model_config_dict["tools"]
        if self.model_config_dict.get("stream") is True:
            return self._run_streaming(messages)
        else:
            return self._run_non_streaming(messages)

    def _run_streaming(
        self, messages: List[OpenAIMessage]
    ) -> Stream[ChatCompletionChunk]:
        r"""Handles streaming inference with SambaNova's API.

        Args:
            messages (List[OpenAIMessage]): A list of messages representing the
                chat history in OpenAI API format.

        Returns:
            Stream[ChatCompletionChunk]: A generator yielding
                `ChatCompletionChunk` objects as they are received from the
                API.

        Raises:
            RuntimeError: If the HTTP request fails.
            ValueError: If the API doesn't support stream mode.
        """
        # Handle SambaNova's Cloud API
        if self._url == "https://api.sambanova.ai/v1":
            response = self._client.chat.completions.create(
                messages=messages,
                model=self.model_type,
                **self.model_config_dict,
            )

            # Add AgentOps LLM Event tracking
            if LLMEvent:
                llm_event = LLMEvent(
                    thread_id=response.id,
                    prompt=" ".join(
                        [message.get("content") for message in messages]  # type: ignore[misc]
                    ),
                    prompt_tokens=response.usage.prompt_tokens,  # type: ignore[union-attr]
                    completion=response.choices[0].message.content,
                    completion_tokens=response.usage.completion_tokens,  # type: ignore[union-attr]
                    model=self.model_type,
                )
                record(llm_event)

            return response

        elif self._url == "https://sambaverse.sambanova.ai/api/predict":
            raise ValueError(
                "https://sambaverse.sambanova.ai/api/predict doesn't support"
                " stream mode"
            )
        raise RuntimeError(f"Unknown URL: {self._url}")

    def _run_non_streaming(
        self, messages: List[OpenAIMessage]
    ) -> ChatCompletion:
        r"""Handles non-streaming inference with SambaNova's API.

        Args:
            messages (List[OpenAIMessage]): A list of messages representing the
                message in OpenAI API format.

        Returns:
            ChatCompletion: A `ChatCompletion` object containing the complete
                response from the API.

        Raises:
            RuntimeError: If the HTTP request fails.
            ValueError: If the JSON response cannot be decoded or is missing
                expected data.
        """
        # Handle SambaNova's Cloud API
        if self._url == "https://api.sambanova.ai/v1":
            response = self._client.chat.completions.create(
                messages=messages,
                model=self.model_type,
                **self.model_config_dict,
            )

            # Add AgentOps LLM Event tracking
            if LLMEvent:
                llm_event = LLMEvent(
                    thread_id=response.id,
                    prompt=" ".join(
                        [message.get("content") for message in messages]  # type: ignore[misc]
                    ),
                    prompt_tokens=response.usage.prompt_tokens,  # type: ignore[union-attr]
                    completion=response.choices[0].message.content,
                    completion_tokens=response.usage.completion_tokens,  # type: ignore[union-attr]
                    model=self.model_type,
                )
                record(llm_event)

            return response

        # Handle SambaNova's Sambaverse API
        else:
            headers = {
                "Content-Type": "application/json",
                "key": str(self._api_key),
                "modelName": self.model_type,
            }

            data = {
                "instance": json.dumps(
                    {
                        "conversation_id": str(uuid.uuid4()),
                        "messages": messages,
                    }
                ),
                "params": {
                    "do_sample": {"type": "bool", "value": "true"},
                    "max_tokens_to_generate": {
                        "type": "int",
                        "value": str(self.model_config_dict.get("max_tokens")),
                    },
                    "process_prompt": {"type": "bool", "value": "true"},
                    "repetition_penalty": {
                        "type": "float",
                        "value": str(
                            self.model_config_dict.get("repetition_penalty")
                        ),
                    },
                    "return_token_count_only": {
                        "type": "bool",
                        "value": "false",
                    },
                    "select_expert": {
                        "type": "str",
                        "value": self.model_type.split('/')[1],
                    },
                    "stop_sequences": {
                        "type": "str",
                        "value": self.model_config_dict.get("stop_sequences"),
                    },
                    "temperature": {
                        "type": "float",
                        "value": str(
                            self.model_config_dict.get("temperature")
                        ),
                    },
                    "top_k": {
                        "type": "int",
                        "value": str(self.model_config_dict.get("top_k")),
                    },
                    "top_p": {
                        "type": "float",
                        "value": str(self.model_config_dict.get("top_p")),
                    },
                },
            }

            try:
                # Send the request and handle the response
                with httpx.Client() as client:
                    response = client.post(
                        self._url,  # type: ignore[arg-type]
                        headers=headers,
                        json=data,
                    )

                raw_text = response.text
                # Split the string into two dictionaries
                dicts = raw_text.split('}\n{')

                # Keep only the last dictionary
                last_dict = '{' + dicts[-1]

                # Parse the dictionary
                last_dict = json.loads(last_dict)
                return self._sambaverse_to_openai_response(last_dict)  # type: ignore[arg-type]

            except httpx.HTTPStatusError:
                raise RuntimeError(f"HTTP request failed: {raw_text}")

    def _sambaverse_to_openai_response(
        self, samba_response: Dict[str, Any]
    ) -> ChatCompletion:
        r"""Converts SambaVerse API response into an OpenAI-compatible
        response.

        Args:
            samba_response (Dict[str, Any]): A dictionary representing
                responses from the SambaVerse API.

        Returns:
            ChatCompletion: A `ChatCompletion` object constructed from the
                aggregated response data.
        """
        choices = [
            dict(
                index=0,
                message={
                    "role": 'assistant',
                    "content": samba_response['result']['responses'][0][
                        'completion'
                    ],
                },
                finish_reason=samba_response['result']['responses'][0][
                    'stop_reason'
                ],
            )
        ]

        obj = ChatCompletion.construct(
            id=None,
            choices=choices,
            created=int(time.time()),
            model=self.model_type,
            object="chat.completion",
            # SambaVerse API only provide `total_tokens`
            usage=CompletionUsage(
                completion_tokens=0,
                prompt_tokens=0,
                total_tokens=int(
                    samba_response['result']['responses'][0][
                        'total_tokens_count'
                    ]
                ),
            ),
        )

        return obj

    @property
    def stream(self) -> bool:
        r"""Returns whether the model is in stream mode, which sends partial
        results each time.

        Returns:
            bool: Whether the model is in stream mode.
        """
        return self.model_config_dict.get('stream', False)