File size: 14,479 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import os
import time
import uuid
from typing import Any, Dict, List, Optional, Union
import httpx
from openai import OpenAI, Stream
from camel.configs import (
SAMBA_CLOUD_API_PARAMS,
SAMBA_VERSE_API_PARAMS,
SambaCloudAPIConfig,
)
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import (
ChatCompletion,
ChatCompletionChunk,
CompletionUsage,
ModelType,
)
from camel.utils import (
BaseTokenCounter,
OpenAITokenCounter,
api_keys_required,
)
try:
if os.getenv("AGENTOPS_API_KEY") is not None:
from agentops import LLMEvent, record
else:
raise ImportError
except (ImportError, AttributeError):
LLMEvent = None
class SambaModel(BaseModelBackend):
r"""SambaNova service interface.
Args:
model_type (Union[ModelType, str]): Model for which a SambaNova backend
is created. Supported models via SambaNova Cloud:
`https://community.sambanova.ai/t/supported-models/193`.
Supported models via SambaVerse API is listed in
`https://sambaverse.sambanova.ai/models`.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`openai.ChatCompletion.create()`. If
:obj:`None`, :obj:`SambaCloudAPIConfig().as_dict()` will be used.
(default: :obj:`None`)
api_key (Optional[str], optional): The API key for authenticating
with the SambaNova service. (default: :obj:`None`)
url (Optional[str], optional): The url to the SambaNova service.
Current support SambaVerse API:
:obj:`"https://sambaverse.sambanova.ai/api/predict"` and
SambaNova Cloud:
:obj:`"https://api.sambanova.ai/v1"` (default: :obj:`https://api.
sambanova.ai/v1`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`OpenAITokenCounter(
ModelType.GPT_4O_MINI)` will be used.
"""
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
if model_config_dict is None:
model_config_dict = SambaCloudAPIConfig().as_dict()
api_key = api_key or os.environ.get("SAMBA_API_KEY")
url = url or os.environ.get(
"SAMBA_API_BASE_URL",
"https://api.sambanova.ai/v1",
)
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
if self._url == "https://api.sambanova.ai/v1":
self._client = OpenAI(
timeout=60,
max_retries=3,
base_url=self._url,
api_key=self._api_key,
)
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
return self._token_counter
def check_model_config(self):
r"""Check whether the model configuration contains any
unexpected arguments to SambaNova API.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments to SambaNova API.
"""
if self._url == "https://sambaverse.sambanova.ai/api/predict":
for param in self.model_config_dict:
if param not in SAMBA_VERSE_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into SambaVerse API."
)
elif self._url == "https://api.sambanova.ai/v1":
for param in self.model_config_dict:
if param not in SAMBA_CLOUD_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into SambaCloud API."
)
else:
raise ValueError(
f"{self._url} is not supported, please check the url to the"
" SambaNova service"
)
@api_keys_required("SAMBA_API_KEY")
def run( # type: ignore[misc]
self, messages: List[OpenAIMessage]
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
r"""Runs SambaNova's service.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
Union[ChatCompletion, Stream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`Stream[ChatCompletionChunk]` in the stream mode.
"""
if "tools" in self.model_config_dict:
del self.model_config_dict["tools"]
if self.model_config_dict.get("stream") is True:
return self._run_streaming(messages)
else:
return self._run_non_streaming(messages)
def _run_streaming(
self, messages: List[OpenAIMessage]
) -> Stream[ChatCompletionChunk]:
r"""Handles streaming inference with SambaNova's API.
Args:
messages (List[OpenAIMessage]): A list of messages representing the
chat history in OpenAI API format.
Returns:
Stream[ChatCompletionChunk]: A generator yielding
`ChatCompletionChunk` objects as they are received from the
API.
Raises:
RuntimeError: If the HTTP request fails.
ValueError: If the API doesn't support stream mode.
"""
# Handle SambaNova's Cloud API
if self._url == "https://api.sambanova.ai/v1":
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=response.usage.prompt_tokens, # type: ignore[union-attr]
completion=response.choices[0].message.content,
completion_tokens=response.usage.completion_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return response
elif self._url == "https://sambaverse.sambanova.ai/api/predict":
raise ValueError(
"https://sambaverse.sambanova.ai/api/predict doesn't support"
" stream mode"
)
raise RuntimeError(f"Unknown URL: {self._url}")
def _run_non_streaming(
self, messages: List[OpenAIMessage]
) -> ChatCompletion:
r"""Handles non-streaming inference with SambaNova's API.
Args:
messages (List[OpenAIMessage]): A list of messages representing the
message in OpenAI API format.
Returns:
ChatCompletion: A `ChatCompletion` object containing the complete
response from the API.
Raises:
RuntimeError: If the HTTP request fails.
ValueError: If the JSON response cannot be decoded or is missing
expected data.
"""
# Handle SambaNova's Cloud API
if self._url == "https://api.sambanova.ai/v1":
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=response.usage.prompt_tokens, # type: ignore[union-attr]
completion=response.choices[0].message.content,
completion_tokens=response.usage.completion_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return response
# Handle SambaNova's Sambaverse API
else:
headers = {
"Content-Type": "application/json",
"key": str(self._api_key),
"modelName": self.model_type,
}
data = {
"instance": json.dumps(
{
"conversation_id": str(uuid.uuid4()),
"messages": messages,
}
),
"params": {
"do_sample": {"type": "bool", "value": "true"},
"max_tokens_to_generate": {
"type": "int",
"value": str(self.model_config_dict.get("max_tokens")),
},
"process_prompt": {"type": "bool", "value": "true"},
"repetition_penalty": {
"type": "float",
"value": str(
self.model_config_dict.get("repetition_penalty")
),
},
"return_token_count_only": {
"type": "bool",
"value": "false",
},
"select_expert": {
"type": "str",
"value": self.model_type.split('/')[1],
},
"stop_sequences": {
"type": "str",
"value": self.model_config_dict.get("stop_sequences"),
},
"temperature": {
"type": "float",
"value": str(
self.model_config_dict.get("temperature")
),
},
"top_k": {
"type": "int",
"value": str(self.model_config_dict.get("top_k")),
},
"top_p": {
"type": "float",
"value": str(self.model_config_dict.get("top_p")),
},
},
}
try:
# Send the request and handle the response
with httpx.Client() as client:
response = client.post(
self._url, # type: ignore[arg-type]
headers=headers,
json=data,
)
raw_text = response.text
# Split the string into two dictionaries
dicts = raw_text.split('}\n{')
# Keep only the last dictionary
last_dict = '{' + dicts[-1]
# Parse the dictionary
last_dict = json.loads(last_dict)
return self._sambaverse_to_openai_response(last_dict) # type: ignore[arg-type]
except httpx.HTTPStatusError:
raise RuntimeError(f"HTTP request failed: {raw_text}")
def _sambaverse_to_openai_response(
self, samba_response: Dict[str, Any]
) -> ChatCompletion:
r"""Converts SambaVerse API response into an OpenAI-compatible
response.
Args:
samba_response (Dict[str, Any]): A dictionary representing
responses from the SambaVerse API.
Returns:
ChatCompletion: A `ChatCompletion` object constructed from the
aggregated response data.
"""
choices = [
dict(
index=0,
message={
"role": 'assistant',
"content": samba_response['result']['responses'][0][
'completion'
],
},
finish_reason=samba_response['result']['responses'][0][
'stop_reason'
],
)
]
obj = ChatCompletion.construct(
id=None,
choices=choices,
created=int(time.time()),
model=self.model_type,
object="chat.completion",
# SambaVerse API only provide `total_tokens`
usage=CompletionUsage(
completion_tokens=0,
prompt_tokens=0,
total_tokens=int(
samba_response['result']['responses'][0][
'total_tokens_count'
]
),
),
)
return obj
@property
def stream(self) -> bool:
r"""Returns whether the model is in stream mode, which sends partial
results each time.
Returns:
bool: Whether the model is in stream mode.
"""
return self.model_config_dict.get('stream', False)
|