File size: 8,277 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from camel.configs import REKA_API_PARAMS, RekaConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
BaseTokenCounter,
OpenAITokenCounter,
api_keys_required,
dependencies_required,
)
if TYPE_CHECKING:
from reka.types import ChatMessage, ChatResponse
try:
import os
if os.getenv("AGENTOPS_API_KEY") is not None:
from agentops import LLMEvent, record
else:
raise ImportError
except (ImportError, AttributeError):
LLMEvent = None
class RekaModel(BaseModelBackend):
r"""Reka API in a unified BaseModelBackend interface.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created, one of REKA_* series.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`Reka.chat.create()`. If :obj:`None`,
:obj:`RekaConfig().as_dict()` will be used. (default: :obj:`None`)
api_key (Optional[str], optional): The API key for authenticating with
the Reka service. (default: :obj:`None`)
url (Optional[str], optional): The url to the Reka service.
(default: :obj:`None`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`OpenAITokenCounter` will
be used. (default: :obj:`None`)
"""
@dependencies_required('reka')
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
from reka.client import Reka
if model_config_dict is None:
model_config_dict = RekaConfig().as_dict()
api_key = api_key or os.environ.get("REKA_API_KEY")
url = url or os.environ.get("REKA_API_BASE_URL")
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
self._client = Reka(api_key=self._api_key, base_url=self._url)
def _convert_reka_to_openai_response(
self, response: 'ChatResponse'
) -> ChatCompletion:
r"""Converts a Reka `ChatResponse` to an OpenAI-style `ChatCompletion`
response.
Args:
response (ChatResponse): The response object from the Reka API.
Returns:
ChatCompletion: An OpenAI-compatible chat completion response.
"""
openai_response = ChatCompletion.construct(
id=response.id,
choices=[
dict(
message={
"role": response.responses[0].message.role,
"content": response.responses[0].message.content,
},
finish_reason=response.responses[0].finish_reason
if response.responses[0].finish_reason
else None,
)
],
created=None,
model=response.model,
object="chat.completion",
usage=response.usage,
)
return openai_response
def _convert_openai_to_reka_messages(
self,
messages: List[OpenAIMessage],
) -> List["ChatMessage"]:
r"""Converts OpenAI API messages to Reka API messages.
Args:
messages (List[OpenAIMessage]): A list of messages in OpenAI
format.
Returns:
List[ChatMessage]: A list of messages converted to Reka's format.
"""
from reka.types import ChatMessage
reka_messages = []
for msg in messages:
role = msg.get("role")
content = str(msg.get("content"))
if role == "user":
reka_messages.append(ChatMessage(role="user", content=content))
elif role == "assistant":
reka_messages.append(
ChatMessage(role="assistant", content=content)
)
elif role == "system":
reka_messages.append(ChatMessage(role="user", content=content))
# Add one more assistant msg since Reka requires conversation
# history must alternate between 'user' and 'assistant',
# starting and ending with 'user'.
reka_messages.append(
ChatMessage(
role="assistant",
content="",
)
)
else:
raise ValueError(f"Unsupported message role: {role}")
return reka_messages
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
# NOTE: Temporarily using `OpenAITokenCounter`
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = OpenAITokenCounter(
model=ModelType.GPT_4O_MINI
)
return self._token_counter
@api_keys_required("REKA_API_KEY")
def run(
self,
messages: List[OpenAIMessage],
) -> ChatCompletion:
r"""Runs inference of Mistral chat completion.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
ChatCompletion.
"""
reka_messages = self._convert_openai_to_reka_messages(messages)
response = self._client.chat.create(
messages=reka_messages,
model=self.model_type,
**self.model_config_dict,
)
openai_response = self._convert_reka_to_openai_response(response)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=openai_response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=openai_response.usage.input_tokens, # type: ignore[union-attr]
completion=openai_response.choices[0].message.content,
completion_tokens=openai_response.usage.output_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return openai_response
def check_model_config(self):
r"""Check whether the model configuration contains any
unexpected arguments to Reka API.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments to Reka API.
"""
for param in self.model_config_dict:
if param not in REKA_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into Reka model backend."
)
@property
def stream(self) -> bool:
r"""Returns whether the model is in stream mode, which sends partial
results each time.
Returns:
bool: Whether the model is in stream mode.
"""
return self.model_config_dict.get('stream', False)
|