File size: 5,574 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import subprocess
from typing import Any, Dict, List, Optional, Union
from openai import OpenAI, Stream
from camel.configs import OLLAMA_API_PARAMS, OllamaConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import (
ChatCompletion,
ChatCompletionChunk,
ModelType,
)
from camel.utils import BaseTokenCounter, OpenAITokenCounter
class OllamaModel(BaseModelBackend):
r"""Ollama service interface.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`openai.ChatCompletion.create()`.
If:obj:`None`, :obj:`OllamaConfig().as_dict()` will be used.
(default: :obj:`None`)
api_key (Optional[str], optional): The API key for authenticating with
the model service. Ollama doesn't need API key, it would be
ignored if set. (default: :obj:`None`)
url (Optional[str], optional): The url to the model service.
(default: :obj:`None`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`OpenAITokenCounter(
ModelType.GPT_4O_MINI)` will be used.
(default: :obj:`None`)
References:
https://github.com/ollama/ollama/blob/main/docs/openai.md
"""
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
if model_config_dict is None:
model_config_dict = OllamaConfig().as_dict()
url = url or os.environ.get("OLLAMA_BASE_URL")
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
if not self._url:
self._start_server()
# Use OpenAI client as interface call Ollama
self._client = OpenAI(
timeout=60,
max_retries=3,
api_key="Set-but-ignored", # required but ignored
base_url=self._url,
)
def _start_server(self) -> None:
r"""Starts the Ollama server in a subprocess."""
try:
subprocess.Popen(
["ollama", "server", "--port", "11434"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
self._url = "http://localhost:11434/v1"
print(
f"Ollama server started on {self._url} "
f"for {self.model_type} model."
)
except Exception as e:
print(f"Failed to start Ollama server: {e}.")
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
return self._token_counter
def check_model_config(self):
r"""Check whether the model configuration contains any
unexpected arguments to Ollama API.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments to OpenAI API.
"""
for param in self.model_config_dict:
if param not in OLLAMA_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into Ollama model backend."
)
def run(
self,
messages: List[OpenAIMessage],
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
r"""Runs inference of OpenAI chat completion.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
Union[ChatCompletion, Stream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`Stream[ChatCompletionChunk]` in the stream mode.
"""
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
return response
@property
def stream(self) -> bool:
r"""Returns whether the model is in stream mode, which sends partial
results each time.
Returns:
bool: Whether the model is in stream mode.
"""
return self.model_config_dict.get('stream', False)
|