File size: 9,772 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union

if TYPE_CHECKING:
    from mistralai.models import (
        ChatCompletionResponse,
        Messages,
    )

from camel.configs import MISTRAL_API_PARAMS, MistralConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
    BaseTokenCounter,
    OpenAITokenCounter,
    api_keys_required,
    dependencies_required,
)

try:
    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import LLMEvent, record
    else:
        raise ImportError
except (ImportError, AttributeError):
    LLMEvent = None


class MistralModel(BaseModelBackend):
    r"""Mistral API in a unified BaseModelBackend interface.

    Args:
        model_type (Union[ModelType, str]): Model for which a backend is
            created, one of MISTRAL_* series.
        model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
            that will be fed into:obj:`Mistral.chat.complete()`.
            If:obj:`None`, :obj:`MistralConfig().as_dict()` will be used.
            (default: :obj:`None`)
        api_key (Optional[str], optional): The API key for authenticating with
            the mistral service. (default: :obj:`None`)
        url (Optional[str], optional): The url to the mistral service.
            (default: :obj:`None`)
        token_counter (Optional[BaseTokenCounter], optional): Token counter to
            use for the model. If not provided, :obj:`OpenAITokenCounter` will
            be used. (default: :obj:`None`)
    """

    @dependencies_required('mistralai')
    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
    ) -> None:
        from mistralai import Mistral

        if model_config_dict is None:
            model_config_dict = MistralConfig().as_dict()

        api_key = api_key or os.environ.get("MISTRAL_API_KEY")
        url = url or os.environ.get("MISTRAL_API_BASE_URL")
        super().__init__(
            model_type, model_config_dict, api_key, url, token_counter
        )
        self._client = Mistral(api_key=self._api_key, server_url=self._url)

    def _to_openai_response(
        self, response: 'ChatCompletionResponse'
    ) -> ChatCompletion:
        tool_calls = None
        if (
            response.choices
            and response.choices[0].message
            and response.choices[0].message.tool_calls is not None
        ):
            tool_calls = [
                dict(
                    id=tool_call.id,  # type: ignore[union-attr]
                    function={
                        "name": tool_call.function.name,  # type: ignore[union-attr]
                        "arguments": tool_call.function.arguments,  # type: ignore[union-attr]
                    },
                    type=tool_call.type,  # type: ignore[union-attr]
                )
                for tool_call in response.choices[0].message.tool_calls
            ]

        obj = ChatCompletion.construct(
            id=response.id,
            choices=[
                dict(
                    index=response.choices[0].index,  # type: ignore[index]
                    message={
                        "role": response.choices[0].message.role,  # type: ignore[index,union-attr]
                        "content": response.choices[0].message.content,  # type: ignore[index,union-attr]
                        "tool_calls": tool_calls,
                    },
                    finish_reason=response.choices[0].finish_reason  # type: ignore[index]
                    if response.choices[0].finish_reason  # type: ignore[index]
                    else None,
                )
            ],
            created=response.created,
            model=response.model,
            object="chat.completion",
            usage=response.usage,
        )

        return obj

    def _to_mistral_chatmessage(
        self,
        messages: List[OpenAIMessage],
    ) -> List["Messages"]:
        import uuid

        from mistralai.models import (
            AssistantMessage,
            FunctionCall,
            SystemMessage,
            ToolCall,
            ToolMessage,
            UserMessage,
        )

        new_messages = []
        for msg in messages:
            tool_id = uuid.uuid4().hex[:9]
            tool_call_id = uuid.uuid4().hex[:9]

            role = msg.get("role")
            function_call = msg.get("function_call")
            content = msg.get("content")

            mistral_function_call = None
            if function_call:
                mistral_function_call = FunctionCall(
                    name=function_call.get("name"),  # type: ignore[attr-defined]
                    arguments=function_call.get("arguments"),  # type: ignore[attr-defined]
                )

            tool_calls = None
            if mistral_function_call:
                tool_calls = [
                    ToolCall(function=mistral_function_call, id=tool_id)
                ]

            if role == "user":
                new_messages.append(UserMessage(content=content))  # type: ignore[arg-type]
            elif role == "assistant":
                new_messages.append(
                    AssistantMessage(content=content, tool_calls=tool_calls)  # type: ignore[arg-type]
                )
            elif role == "system":
                new_messages.append(SystemMessage(content=content))  # type: ignore[arg-type]
            elif role in {"tool", "function"}:
                new_messages.append(
                    ToolMessage(
                        content=content,  # type: ignore[arg-type]
                        tool_call_id=tool_call_id,
                        name=msg.get("name"),  # type: ignore[arg-type]
                    )
                )
            else:
                raise ValueError(f"Unsupported message role: {role}")

        return new_messages  # type: ignore[return-value]

    @property
    def token_counter(self) -> BaseTokenCounter:
        r"""Initialize the token counter for the model backend.

        # NOTE: Temporarily using `OpenAITokenCounter` due to a current issue
        # with installing `mistral-common` alongside `mistralai`.
        # Refer to: https://github.com/mistralai/mistral-common/issues/37

        Returns:
            BaseTokenCounter: The token counter following the model's
                tokenization style.
        """
        if not self._token_counter:
            self._token_counter = OpenAITokenCounter(
                model=ModelType.GPT_4O_MINI
            )
        return self._token_counter

    @api_keys_required("MISTRAL_API_KEY")
    def run(
        self,
        messages: List[OpenAIMessage],
    ) -> ChatCompletion:
        r"""Runs inference of Mistral chat completion.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.

        Returns:
            ChatCompletion.
        """
        mistral_messages = self._to_mistral_chatmessage(messages)

        response = self._client.chat.complete(
            messages=mistral_messages,
            model=self.model_type,
            **self.model_config_dict,
        )

        openai_response = self._to_openai_response(response)  # type: ignore[arg-type]

        # Add AgentOps LLM Event tracking
        if LLMEvent:
            llm_event = LLMEvent(
                thread_id=openai_response.id,
                prompt=" ".join(
                    [message.get("content") for message in messages]  # type: ignore[misc]
                ),
                prompt_tokens=openai_response.usage.prompt_tokens,  # type: ignore[union-attr]
                completion=openai_response.choices[0].message.content,
                completion_tokens=openai_response.usage.completion_tokens,  # type: ignore[union-attr]
                model=self.model_type,
            )
            record(llm_event)

        return openai_response

    def check_model_config(self):
        r"""Check whether the model configuration contains any
        unexpected arguments to Mistral API.

        Raises:
            ValueError: If the model configuration dictionary contains any
                unexpected arguments to Mistral API.
        """
        for param in self.model_config_dict:
            if param not in MISTRAL_API_PARAMS:
                raise ValueError(
                    f"Unexpected argument `{param}` is "
                    "input into Mistral model backend."
                )

    @property
    def stream(self) -> bool:
        r"""Returns whether the model is in stream mode, which sends partial
        results each time. Current it's not supported.

        Returns:
            bool: Whether the model is in stream mode.
        """
        return False