File size: 5,296 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, Dict, List, Optional, Union
from camel.configs import LITELLM_API_PARAMS, LiteLLMConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
BaseTokenCounter,
LiteLLMTokenCounter,
dependencies_required,
)
class LiteLLMModel(BaseModelBackend):
r"""Constructor for LiteLLM backend with OpenAI compatibility.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created, such as GPT-3.5-turbo, Claude-2, etc.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`openai.ChatCompletion.create()`.
If:obj:`None`, :obj:`LiteLLMConfig().as_dict()` will be used.
(default: :obj:`None`)
api_key (Optional[str], optional): The API key for authenticating with
the model service. (default: :obj:`None`)
url (Optional[str], optional): The url to the model service.
(default: :obj:`None`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`LiteLLMTokenCounter` will
be used. (default: :obj:`None`)
"""
# NOTE: Currently stream mode is not supported.
@dependencies_required('litellm')
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
from litellm import completion
if model_config_dict is None:
model_config_dict = LiteLLMConfig().as_dict()
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
self.client = completion
def _convert_response_from_litellm_to_openai(
self, response
) -> ChatCompletion:
r"""Converts a response from the LiteLLM format to the OpenAI format.
Parameters:
response (LiteLLMResponse): The response object from LiteLLM.
Returns:
ChatCompletion: The response object in OpenAI's format.
"""
return ChatCompletion.construct(
id=response.id,
choices=[
{
"index": response.choices[0].index,
"message": {
"role": response.choices[0].message.role,
"content": response.choices[0].message.content,
},
"finish_reason": response.choices[0].finish_reason,
}
],
created=response.created,
model=response.model,
object=response.object,
system_fingerprint=response.system_fingerprint,
usage=response.usage,
)
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = LiteLLMTokenCounter(self.model_type)
return self._token_counter
def run(
self,
messages: List[OpenAIMessage],
) -> ChatCompletion:
r"""Runs inference of LiteLLM chat completion.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI format.
Returns:
ChatCompletion
"""
response = self.client(
api_key=self._api_key,
base_url=self._url,
model=self.model_type,
messages=messages,
**self.model_config_dict,
)
response = self._convert_response_from_litellm_to_openai(response)
return response
def check_model_config(self):
r"""Check whether the model configuration contains any unexpected
arguments to LiteLLM API.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments.
"""
for param in self.model_config_dict:
if param not in LITELLM_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into LiteLLM model backend."
)
|