File size: 5,296 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, Dict, List, Optional, Union

from camel.configs import LITELLM_API_PARAMS, LiteLLMConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
    BaseTokenCounter,
    LiteLLMTokenCounter,
    dependencies_required,
)


class LiteLLMModel(BaseModelBackend):
    r"""Constructor for LiteLLM backend with OpenAI compatibility.

    Args:
        model_type (Union[ModelType, str]): Model for which a backend is
            created, such as GPT-3.5-turbo, Claude-2, etc.
        model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
            that will be fed into:obj:`openai.ChatCompletion.create()`.
            If:obj:`None`, :obj:`LiteLLMConfig().as_dict()` will be used.
            (default: :obj:`None`)
        api_key (Optional[str], optional): The API key for authenticating with
            the model service. (default: :obj:`None`)
        url (Optional[str], optional): The url to the model service.
            (default: :obj:`None`)
        token_counter (Optional[BaseTokenCounter], optional): Token counter to
            use for the model. If not provided, :obj:`LiteLLMTokenCounter` will
            be used. (default: :obj:`None`)
    """

    # NOTE: Currently stream mode is not supported.

    @dependencies_required('litellm')
    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
    ) -> None:
        from litellm import completion

        if model_config_dict is None:
            model_config_dict = LiteLLMConfig().as_dict()

        super().__init__(
            model_type, model_config_dict, api_key, url, token_counter
        )
        self.client = completion

    def _convert_response_from_litellm_to_openai(
        self, response
    ) -> ChatCompletion:
        r"""Converts a response from the LiteLLM format to the OpenAI format.

        Parameters:
            response (LiteLLMResponse): The response object from LiteLLM.

        Returns:
            ChatCompletion: The response object in OpenAI's format.
        """
        return ChatCompletion.construct(
            id=response.id,
            choices=[
                {
                    "index": response.choices[0].index,
                    "message": {
                        "role": response.choices[0].message.role,
                        "content": response.choices[0].message.content,
                    },
                    "finish_reason": response.choices[0].finish_reason,
                }
            ],
            created=response.created,
            model=response.model,
            object=response.object,
            system_fingerprint=response.system_fingerprint,
            usage=response.usage,
        )

    @property
    def token_counter(self) -> BaseTokenCounter:
        r"""Initialize the token counter for the model backend.

        Returns:
            BaseTokenCounter: The token counter following the model's
                tokenization style.
        """
        if not self._token_counter:
            self._token_counter = LiteLLMTokenCounter(self.model_type)
        return self._token_counter

    def run(
        self,
        messages: List[OpenAIMessage],
    ) -> ChatCompletion:
        r"""Runs inference of LiteLLM chat completion.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI format.

        Returns:
            ChatCompletion
        """
        response = self.client(
            api_key=self._api_key,
            base_url=self._url,
            model=self.model_type,
            messages=messages,
            **self.model_config_dict,
        )
        response = self._convert_response_from_litellm_to_openai(response)
        return response

    def check_model_config(self):
        r"""Check whether the model configuration contains any unexpected
        arguments to LiteLLM API.

        Raises:
            ValueError: If the model configuration dictionary contains any
                unexpected arguments.
        """
        for param in self.model_config_dict:
            if param not in LITELLM_API_PARAMS:
                raise ValueError(
                    f"Unexpected argument `{param}` is "
                    "input into LiteLLM model backend."
                )