File size: 4,963 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Dict, List, Optional, Union
from openai import OpenAI, Stream
from camel.configs import GROQ_API_PARAMS, GroqConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import (
ChatCompletion,
ChatCompletionChunk,
ModelType,
)
from camel.utils import (
BaseTokenCounter,
OpenAITokenCounter,
api_keys_required,
)
class GroqModel(BaseModelBackend):
r"""LLM API served by Groq in a unified BaseModelBackend interface.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`openai.ChatCompletion.create()`.
If:obj:`None`, :obj:`GroqConfig().as_dict()` will be used.
(default: :obj:`None`)
api_key (Optional[str], optional): The API key for authenticating
with the Groq service. (default: :obj:`None`).
url (Optional[str], optional): The url to the Groq service.
(default: :obj:`None`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`OpenAITokenCounter(
ModelType.GPT_4O_MINI)` will be used.
(default: :obj:`None`)
"""
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
if model_config_dict is None:
model_config_dict = GroqConfig().as_dict()
api_key = api_key or os.environ.get("GROQ_API_KEY")
url = url or os.environ.get(
"GROQ_API_BASE_URL" or "https://api.groq.com/openai/v1"
)
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
self._client = OpenAI(
timeout=60,
max_retries=3,
api_key=self._api_key,
base_url=self._url,
)
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
# Make sure you have the access to these open-source model in
# HuggingFace
if not self._token_counter:
self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
return self._token_counter
@api_keys_required("GROQ_API_KEY")
def run(
self,
messages: List[OpenAIMessage],
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
r"""Runs inference of OpenAI chat completion.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
Union[ChatCompletion, Stream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`Stream[ChatCompletionChunk]` in the stream mode.
"""
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
return response
def check_model_config(self):
r"""Check whether the model configuration contains any unexpected
arguments to Groq API. But Groq API does not have any additional
arguments to check.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments to Groq API.
"""
for param in self.model_config_dict:
if param not in GROQ_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into Groq model backend."
)
@property
def stream(self) -> bool:
r"""Returns whether the model supports streaming. But Groq API does
not support streaming.
"""
return False
|