File size: 6,067 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Dict, List, Optional, Union
from camel.configs import ANTHROPIC_API_PARAMS, AnthropicConfig
from camel.messages import OpenAIMessage
from camel.models.base_model import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
AnthropicTokenCounter,
BaseTokenCounter,
api_keys_required,
dependencies_required,
)
class AnthropicModel(BaseModelBackend):
r"""Anthropic API in a unified BaseModelBackend interface.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created, one of CLAUDE_* series.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into Anthropic.messages.create(). If
:obj:`None`, :obj:`AnthropicConfig().as_dict()` will be used.
(default::obj:`None`)
api_key (Optional[str], optional): The API key for authenticating with
the Anthropic service. (default: :obj:`None`)
url (Optional[str], optional): The url to the Anthropic service.
(default: :obj:`None`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`AnthropicTokenCounter`
will be used. (default: :obj:`None`)
"""
@dependencies_required('anthropic')
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
from anthropic import Anthropic
if model_config_dict is None:
model_config_dict = AnthropicConfig().as_dict()
api_key = api_key or os.environ.get("ANTHROPIC_API_KEY")
url = url or os.environ.get("ANTHROPIC_API_BASE_URL")
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
self.client = Anthropic(api_key=self._api_key, base_url=self._url)
def _convert_response_from_anthropic_to_openai(self, response):
# openai ^1.0.0 format, reference openai/types/chat/chat_completion.py
obj = ChatCompletion.construct(
id=None,
choices=[
dict(
index=0,
message={
"role": "assistant",
"content": response.content[0].text,
},
finish_reason=response.stop_reason,
)
],
created=None,
model=response.model,
object="chat.completion",
)
return obj
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = AnthropicTokenCounter()
return self._token_counter
def count_tokens_from_prompt(self, prompt: str) -> int:
r"""Count the number of tokens from a prompt.
Args:
prompt (str): The prompt string.
Returns:
int: The number of tokens in the prompt.
"""
return self.client.count_tokens(prompt)
@api_keys_required("ANTHROPIC_API_KEY")
def run(
self,
messages: List[OpenAIMessage],
):
r"""Run inference of Anthropic chat completion.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
ChatCompletion: Response in the OpenAI API format.
"""
from anthropic import NOT_GIVEN
if messages[0]["role"] == "system":
sys_msg = str(messages.pop(0)["content"])
else:
sys_msg = NOT_GIVEN # type: ignore[assignment]
response = self.client.messages.create(
model=self.model_type,
system=sys_msg,
messages=messages, # type: ignore[arg-type]
**self.model_config_dict,
)
# format response to openai format
response = self._convert_response_from_anthropic_to_openai(response)
return response
def check_model_config(self):
r"""Check whether the model configuration is valid for anthropic
model backends.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments to OpenAI API, or it does not contain
:obj:`model_path` or :obj:`server_url`.
"""
for param in self.model_config_dict:
if param not in ANTHROPIC_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into Anthropic model backend."
)
@property
def stream(self) -> bool:
r"""Returns whether the model is in stream mode, which sends partial
results each time.
Returns:
bool: Whether the model is in stream mode.
"""
return self.model_config_dict.get("stream", False)
|