File size: 17,463 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import uuid
import warnings
from typing import (
IO,
TYPE_CHECKING,
Any,
Dict,
List,
Literal,
Optional,
Tuple,
Union,
)
if TYPE_CHECKING:
from unstructured.documents.elements import Element
import pdb
class UnstructuredIO:
r"""A class to handle various functionalities provided by the
Unstructured library, including version checking, parsing, cleaning,
extracting, staging, chunking data, and integrating with cloud
services like S3 and Azure for data connection.
References:
https://docs.unstructured.io/
"""
@staticmethod
def create_element_from_text(
text: str,
element_id: Optional[str] = None,
embeddings: Optional[List[float]] = None,
filename: Optional[str] = None,
file_directory: Optional[str] = None,
last_modified: Optional[str] = None,
filetype: Optional[str] = None,
parent_id: Optional[str] = None,
) -> "Element":
r"""Creates a Text element from a given text input, with optional
metadata and embeddings.
Args:
text (str): The text content for the element.
element_id (Optional[str], optional): Unique identifier for the
element. (default: :obj:`None`)
embeddings (List[float], optional): A list of float
numbers representing the text embeddings.
(default: :obj:`None`)
filename (Optional[str], optional): The name of the file the
element is associated with. (default: :obj:`None`)
file_directory (Optional[str], optional): The directory path where
the file is located. (default: :obj:`None`)
last_modified (Optional[str], optional): The last modified date of
the file. (default: :obj:`None`)
filetype (Optional[str], optional): The type of the file.
(default: :obj:`None`)
parent_id (Optional[str], optional): The identifier of the parent
element. (default: :obj:`None`)
Returns:
Element: An instance of Text with the provided content and
metadata.
"""
from unstructured.documents.elements import ElementMetadata, Text
metadata = ElementMetadata(
filename=filename,
file_directory=file_directory,
last_modified=last_modified,
filetype=filetype,
parent_id=parent_id,
)
return Text(
text=text,
element_id=element_id or str(uuid.uuid4()),
metadata=metadata,
embeddings=embeddings,
)
@staticmethod
def parse_file_or_url(
input_path: str,
**kwargs: Any,
) -> Union[List["Element"], None]:
r"""Loads a file or a URL and parses its contents into elements.
Args:
input_path (str): Path to the file or URL to be parsed.
**kwargs: Extra kwargs passed to the partition function.
Returns:
Union[List[Element],None]: List of elements after parsing the file
or URL if success.
Raises:
FileNotFoundError: If the file does not exist at the path
specified.
Notes:
Supported file types:
"csv", "doc", "docx", "epub", "image", "md", "msg", "odt",
"org", "pdf", "ppt", "pptx", "rtf", "rst", "tsv", "xlsx".
References:
https://unstructured-io.github.io/unstructured/
"""
import os
from urllib.parse import urlparse
from unstructured.partition.auto import partition
# Check if the input is a URL
parsed_url = urlparse(input_path)
# pdb.set_trace()
is_url = all([parsed_url.scheme, parsed_url.netloc])
# Handling URL
if is_url:
try:
elements = partition(url=input_path, **kwargs)
return elements
except Exception:
warnings.warn(f"Failed to parse the URL: {input_path}")
return None
# Handling file
else:
# Check if the file exists
if not os.path.exists(input_path):
raise FileNotFoundError(
f"The file {input_path} was not found."
)
# Read the file
try:
with open(input_path, "rb") as f:
elements = partition(file=f, **kwargs)
return elements
except Exception:
warnings.warn(f"Failed to partition the file: {input_path}")
return None
@staticmethod
def parse_bytes(
file: IO[bytes], **kwargs: Any
) -> Union[List["Element"], None]:
r"""Parses a bytes stream and converts its contents into elements.
Args:
file (IO[bytes]): The file in bytes format to be parsed.
**kwargs: Extra kwargs passed to the partition function.
Returns:
Union[List[Element], None]: List of elements after parsing the file
if successful, otherwise `None`.
Notes:
Supported file types:
"csv", "doc", "docx", "epub", "image", "md", "msg", "odt",
"org", "pdf", "ppt", "pptx", "rtf", "rst", "tsv", "xlsx".
References:
https://docs.unstructured.io/open-source/core-functionality/partitioning
"""
from unstructured.partition.auto import partition
try:
# Use partition to process the bytes stream
elements = partition(file=file, **kwargs)
return elements
except Exception as e:
warnings.warn(f"Failed to partition the file stream: {e}")
return None
@staticmethod
def clean_text_data(
text: str,
clean_options: Optional[List[Tuple[str, Dict[str, Any]]]] = None,
) -> str:
r"""Cleans text data using a variety of cleaning functions provided by
the `unstructured` library.
This function applies multiple text cleaning utilities by calling the
`unstructured` library's cleaning bricks for operations like
replacing Unicode quotes, removing extra whitespace, dashes, non-ascii
characters, and more.
If no cleaning options are provided, a default set of cleaning
operations is applied. These defaults including operations
"replace_unicode_quotes", "clean_non_ascii_chars",
"group_broken_paragraphs", and "clean_extra_whitespace".
Args:
text (str): The text to be cleaned.
clean_options (dict): A dictionary specifying which cleaning
options to apply. The keys should match the names of the
cleaning functions, and the values should be dictionaries
containing the parameters for each function. Supported types:
'clean_extra_whitespace', 'clean_bullets',
'clean_ordered_bullets', 'clean_postfix', 'clean_prefix',
'clean_dashes', 'clean_trailing_punctuation',
'clean_non_ascii_chars', 'group_broken_paragraphs',
'remove_punctuation', 'replace_unicode_quotes',
'bytes_string_to_string', 'translate_text'.
Returns:
str: The cleaned text.
Raises:
AttributeError: If a cleaning option does not correspond to a
valid cleaning function in `unstructured`.
Notes:
The 'options' dictionary keys must correspond to valid cleaning
brick names from the `unstructured` library.
Each brick's parameters must be provided in a nested dictionary
as the value for the key.
References:
https://unstructured-io.github.io/unstructured/
"""
from unstructured.cleaners.core import (
bytes_string_to_string,
clean_bullets,
clean_dashes,
clean_extra_whitespace,
clean_non_ascii_chars,
clean_ordered_bullets,
clean_postfix,
clean_prefix,
clean_trailing_punctuation,
group_broken_paragraphs,
remove_punctuation,
replace_unicode_quotes,
)
from unstructured.cleaners.translate import translate_text
cleaning_functions: Any = {
"clean_extra_whitespace": clean_extra_whitespace,
"clean_bullets": clean_bullets,
"clean_ordered_bullets": clean_ordered_bullets,
"clean_postfix": clean_postfix,
"clean_prefix": clean_prefix,
"clean_dashes": clean_dashes,
"clean_trailing_punctuation": clean_trailing_punctuation,
"clean_non_ascii_chars": clean_non_ascii_chars,
"group_broken_paragraphs": group_broken_paragraphs,
"remove_punctuation": remove_punctuation,
"replace_unicode_quotes": replace_unicode_quotes,
"bytes_string_to_string": bytes_string_to_string,
"translate_text": translate_text,
}
# Define default clean options if none are provided
if clean_options is None:
clean_options = [
("replace_unicode_quotes", {}),
("clean_non_ascii_chars", {}),
("group_broken_paragraphs", {}),
("clean_extra_whitespace", {}),
]
cleaned_text = text
for func_name, params in clean_options:
if func_name in cleaning_functions:
cleaned_text = cleaning_functions[func_name](
cleaned_text, **params
)
else:
raise ValueError(
f"'{func_name}' is not a valid function in "
"`Unstructured IO`."
)
return cleaned_text
@staticmethod
def extract_data_from_text(
text: str,
extract_type: Literal[
'extract_datetimetz',
'extract_email_address',
'extract_ip_address',
'extract_ip_address_name',
'extract_mapi_id',
'extract_ordered_bullets',
'extract_text_after',
'extract_text_before',
'extract_us_phone_number',
],
**kwargs,
) -> Any:
r"""Extracts various types of data from text using functions from
unstructured.cleaners.extract.
Args:
text (str): Text to extract data from.
extract_type (Literal['extract_datetimetz',
'extract_email_address', 'extract_ip_address',
'extract_ip_address_name', 'extract_mapi_id',
'extract_ordered_bullets', 'extract_text_after',
'extract_text_before', 'extract_us_phone_number']): Type of
data to extract.
**kwargs: Additional keyword arguments for specific
extraction functions.
Returns:
Any: The extracted data, type depends on extract_type.
References:
https://unstructured-io.github.io/unstructured/
"""
from unstructured.cleaners.extract import (
extract_datetimetz,
extract_email_address,
extract_ip_address,
extract_ip_address_name,
extract_mapi_id,
extract_ordered_bullets,
extract_text_after,
extract_text_before,
extract_us_phone_number,
)
extraction_functions: Any = {
"extract_datetimetz": extract_datetimetz,
"extract_email_address": extract_email_address,
"extract_ip_address": extract_ip_address,
"extract_ip_address_name": extract_ip_address_name,
"extract_mapi_id": extract_mapi_id,
"extract_ordered_bullets": extract_ordered_bullets,
"extract_text_after": extract_text_after,
"extract_text_before": extract_text_before,
"extract_us_phone_number": extract_us_phone_number,
}
if extract_type not in extraction_functions:
raise ValueError(f"Unsupported extract_type: {extract_type}")
return extraction_functions[extract_type](text, **kwargs)
@staticmethod
def stage_elements(
elements: List[Any],
stage_type: Literal[
'convert_to_csv',
'convert_to_dataframe',
'convert_to_dict',
'dict_to_elements',
'stage_csv_for_prodigy',
'stage_for_prodigy',
'stage_for_baseplate',
'stage_for_datasaur',
'stage_for_label_box',
'stage_for_label_studio',
'stage_for_weaviate',
],
**kwargs,
) -> Union[str, List[Dict], Any]:
r"""Stages elements for various platforms based on the
specified staging type.
This function applies multiple staging utilities to format data
for different NLP annotation and machine learning tools. It uses
the 'unstructured.staging' module's functions for operations like
converting to CSV, DataFrame, dictionary, or formatting for
specific platforms like Prodigy, etc.
Args:
elements (List[Any]): List of Element objects to be staged.
stage_type (Literal['convert_to_csv', 'convert_to_dataframe',
'convert_to_dict', 'dict_to_elements',
'stage_csv_for_prodigy', 'stage_for_prodigy',
'stage_for_baseplate', 'stage_for_datasaur',
'stage_for_label_box', 'stage_for_label_studio',
'stage_for_weaviate']): Type of staging to perform.
**kwargs: Additional keyword arguments specific to
the staging type.
Returns:
Union[str, List[Dict], Any]: Staged data in the
format appropriate for the specified staging type.
Raises:
ValueError: If the staging type is not supported or a required
argument is missing.
References:
https://unstructured-io.github.io/unstructured/
"""
from unstructured.staging import (
base,
baseplate,
datasaur,
label_box,
label_studio,
prodigy,
weaviate,
)
staging_functions: Any = {
"convert_to_csv": base.convert_to_csv,
"convert_to_dataframe": base.convert_to_dataframe,
"convert_to_dict": base.convert_to_dict,
"dict_to_elements": base.dict_to_elements,
"stage_csv_for_prodigy": lambda els,
**kw: prodigy.stage_csv_for_prodigy(els, kw.get('metadata', [])),
"stage_for_prodigy": lambda els, **kw: prodigy.stage_for_prodigy(
els, kw.get('metadata', [])
),
"stage_for_baseplate": baseplate.stage_for_baseplate,
"stage_for_datasaur": lambda els,
**kw: datasaur.stage_for_datasaur(els, kw.get('entities', [])),
"stage_for_label_box": lambda els,
**kw: label_box.stage_for_label_box(els, **kw),
"stage_for_label_studio": lambda els,
**kw: label_studio.stage_for_label_studio(els, **kw),
"stage_for_weaviate": weaviate.stage_for_weaviate,
}
if stage_type not in staging_functions:
raise ValueError(f"Unsupported stage type: {stage_type}")
return staging_functions[stage_type](elements, **kwargs)
@staticmethod
def chunk_elements(
elements: List["Element"], chunk_type: str, **kwargs
) -> List["Element"]:
r"""Chunks elements by titles.
Args:
elements (List[Element]): List of Element objects to be chunked.
chunk_type (str): Type chunk going to apply. Supported types:
'chunk_by_title'.
**kwargs: Additional keyword arguments for chunking.
Returns:
List[Dict]: List of chunked sections.
References:
https://unstructured-io.github.io/unstructured/
"""
from unstructured.chunking.title import chunk_by_title
chunking_functions = {
"chunk_by_title": chunk_by_title,
}
if chunk_type not in chunking_functions:
raise ValueError(f"Unsupported chunk type: {chunk_type}")
# Format chunks into a list of dictionaries (or your preferred format)
return chunking_functions[chunk_type](elements, **kwargs)
|