File size: 14,707 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import os
import tempfile
from typing import Any, List, Optional
from camel.datahubs.base import BaseDatasetManager
from camel.datahubs.models import Record
from camel.logger import get_logger
from camel.types import HuggingFaceRepoType
from camel.utils import api_keys_required, dependencies_required
logger = get_logger(__name__)
class HuggingFaceDatasetManager(BaseDatasetManager):
r"""A dataset manager for Hugging Face datasets. This class provides
methods to create, add, update, delete, and list records in a dataset on
the Hugging Face Hub.
Args:
token (str): The Hugging Face API token. If not provided, the token
will be read from the environment variable `HUGGING_FACE_TOKEN`.
"""
@api_keys_required("HUGGING_FACE_TOKEN")
@dependencies_required('huggingface_hub')
def __init__(self, token: Optional[str] = None):
from huggingface_hub import HfApi
self._api_key = token or os.getenv("HUGGING_FACE_TOKEN")
self.api = HfApi(token=self._api_key)
def create_dataset_card(
self,
dataset_name: str,
description: str,
license: Optional[str] = None,
version: Optional[str] = None,
tags: Optional[List[str]] = None,
authors: Optional[List[str]] = None,
size_category: Optional[List[str]] = None,
language: Optional[List[str]] = None,
task_categories: Optional[List[str]] = None,
content: Optional[str] = None,
) -> None:
r"""Creates and uploads a dataset card to the Hugging Face Hub in YAML
format.
Args:
dataset_name (str): The name of the dataset.
description (str): A description of the dataset.
license (str): The license of the dataset. (default: :obj:`None`)
version (str): The version of the dataset. (default: :obj:`None`)
tags (list): A list of tags for the dataset.(default: :obj:`None`)
authors (list): A list of authors of the dataset. (default:
:obj:`None`)
size_category (list): A size category for the dataset. (default:
:obj:`None`)
language (list): A list of languages the dataset is in. (default:
:obj:`None`)
task_categories (list): A list of task categories. (default:
:obj:`None`)
content (str): Custom markdown content that the user wants to add
to the dataset card. (default: :obj:`None`)
"""
import yaml
metadata = {
"license": license,
"authors": authors,
"task_categories": task_categories,
"language": language,
"tags": tags,
"pretty_name": dataset_name,
"size_categories": size_category,
"version": version,
"description": description,
}
# Remove keys with None values
metadata = {k: v for k, v in metadata.items() if v}
card_content = (
"---\n"
+ yaml.dump(metadata, default_flow_style=False, allow_unicode=True)
+ "\n---"
)
if content:
card_content += f"\n\n# Additional Information\n{content}\n"
self._upload_file(
file_content=card_content,
dataset_name=dataset_name,
filepath="README.md",
file_type="md",
)
def create_dataset(
self, name: str, private: bool = False, **kwargs: Any
) -> str:
r"""Creates a new dataset on the Hugging Face Hub.
Args:
name (str): The name of the dataset.
private (bool): Whether the dataset should be private. defaults to
False.
kwargs (Any): Additional keyword arguments.
Returns:
str: The URL of the created dataset.
"""
from huggingface_hub.errors import RepositoryNotFoundError
try:
self.api.repo_info(
repo_id=name,
repo_type=HuggingFaceRepoType.DATASET.value,
**kwargs,
)
except RepositoryNotFoundError:
self.api.create_repo(
repo_id=name,
repo_type=HuggingFaceRepoType.DATASET.value,
private=private,
)
return f"https://huggingface.co/datasets/{name}"
def list_datasets(
self, username: str, limit: int = 100, **kwargs: Any
) -> List[str]:
r"""Lists all datasets for the current user.
Args:
username (str): The username of the user whose datasets to list.
limit (int): The maximum number of datasets to list.
(default: :obj:`100`)
kwargs (Any): Additional keyword arguments.
Returns:
List[str]: A list of dataset ids.
"""
try:
return [
dataset.id
for dataset in self.api.list_datasets(
author=username, limit=limit, **kwargs
)
]
except Exception as e:
logger.error(f"Error listing datasets: {e}")
return []
def delete_dataset(self, dataset_name: str, **kwargs: Any) -> None:
r"""Deletes a dataset from the Hugging Face Hub.
Args:
dataset_name (str): The name of the dataset to delete.
kwargs (Any): Additional keyword arguments.
"""
try:
self.api.delete_repo(
repo_id=dataset_name,
repo_type=HuggingFaceRepoType.DATASET.value,
**kwargs,
)
logger.info(f"Dataset '{dataset_name}' deleted successfully.")
except Exception as e:
logger.error(f"Error deleting dataset '{dataset_name}': {e}")
raise
def add_records(
self,
dataset_name: str,
records: List[Record],
filepath: str = "records/records.json",
**kwargs: Any,
) -> None:
r"""Adds records to a dataset on the Hugging Face Hub.
Args:
dataset_name (str): The name of the dataset.
records (List[Record]): A list of records to add to the dataset.
filepath (str): The path to the file containing the records.
kwargs (Any): Additional keyword arguments.
Raises:
ValueError: If the dataset already has a records file.
"""
existing_records = self._download_records(
dataset_name=dataset_name, filepath=filepath, **kwargs
)
if existing_records:
raise ValueError(
f"Dataset '{filepath}' already exists. "
f"Use `update_records` to modify."
)
self._upload_records(
records=records,
dataset_name=dataset_name,
filepath=filepath,
**kwargs,
)
def update_records(
self,
dataset_name: str,
records: List[Record],
filepath: str = "records/records.json",
**kwargs: Any,
) -> None:
r"""Updates records in a dataset on the Hugging Face Hub.
Args:
dataset_name (str): The name of the dataset.
records (List[Record]): A list of records to update in the dataset.
filepath (str): The path to the file containing the records.
kwargs (Any): Additional keyword arguments.
Raises:
ValueError: If the dataset does not have an existing file to update
records in.
"""
existing_records = self._download_records(
dataset_name=dataset_name, filepath=filepath, **kwargs
)
if not existing_records:
logger.warning(
f"Dataset '{dataset_name}' does not have existing "
"records. Adding new records."
)
self._upload_records(
records=records,
dataset_name=dataset_name,
filepath=filepath,
**kwargs,
)
return
old_dict = {record.id: record for record in existing_records}
new_dict = {record.id: record for record in records}
merged_dict = old_dict.copy()
merged_dict.update(new_dict)
self._upload_records(
records=list(merged_dict.values()),
dataset_name=dataset_name,
filepath=filepath,
**kwargs,
)
def delete_record(
self,
dataset_name: str,
record_id: str,
filepath: str = "records/records.json",
**kwargs: Any,
) -> None:
r"""Deletes a record from the dataset.
Args:
dataset_name (str): The name of the dataset.
record_id (str): The ID of the record to delete.
filepath (str): The path to the file containing the records.
kwargs (Any): Additional keyword arguments.
Raises:
ValueError: If the dataset does not have an existing file to delete
records from.
"""
existing_records = self._download_records(
dataset_name=dataset_name, filepath=filepath, **kwargs
)
if not existing_records:
raise ValueError(
f"Dataset '{dataset_name}' does not have an existing file to "
f"delete records from."
)
filtered_records = [
record for record in existing_records if record.id != record_id
]
self._upload_records(
records=filtered_records,
dataset_name=dataset_name,
filepath=filepath,
**kwargs,
)
def list_records(
self,
dataset_name: str,
filepath: str = "records/records.json",
**kwargs: Any,
) -> List[Record]:
r"""Lists all records in a dataset.
Args:
dataset_name (str): The name of the dataset.
filepath (str): The path to the file containing the records.
kwargs (Any): Additional keyword arguments.
Returns:
List[Record]: A list of records in the dataset.
"""
return self._download_records(
dataset_name=dataset_name, filepath=filepath, **kwargs
)
def _download_records(
self, dataset_name: str, filepath: str, **kwargs: Any
) -> List[Record]:
from huggingface_hub import hf_hub_download
from huggingface_hub.errors import EntryNotFoundError
try:
downloaded_file_path = hf_hub_download(
repo_id=dataset_name,
filename=filepath,
repo_type=HuggingFaceRepoType.DATASET.value,
token=self._api_key,
**kwargs,
)
with open(downloaded_file_path, "r") as f:
records_data = json.load(f)
return [Record(**record) for record in records_data]
except EntryNotFoundError:
logger.info(f"No records found for dataset '{dataset_name}'.")
return []
except Exception as e:
logger.error(f"Error downloading or processing records: {e}")
raise e
def _upload_records(
self,
records: List[Record],
dataset_name: str,
filepath: str,
**kwargs: Any,
):
with tempfile.NamedTemporaryFile(
delete=False, mode="w", newline="", encoding="utf-8"
) as f:
json.dump([record.model_dump() for record in records], f)
temp_file_path = f.name
try:
self.api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=filepath,
repo_id=dataset_name,
repo_type=HuggingFaceRepoType.DATASET.value,
**kwargs,
)
except Exception as e:
logger.error(f"Error uploading records file: {e}")
raise
finally:
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
def _upload_file(
self,
file_content: str,
dataset_name: str,
filepath: str,
file_type: str = "json",
**kwargs: Any,
):
with tempfile.NamedTemporaryFile(
mode="w", delete=False, suffix=f".{file_type}"
) as f:
if file_type == "json":
if isinstance(file_content, str):
try:
json_content = json.loads(file_content)
except json.JSONDecodeError:
raise ValueError(
"Invalid JSON string provided for file_content."
)
else:
try:
json.dumps(file_content)
json_content = file_content
except (TypeError, ValueError):
raise ValueError(
"file_content is not JSON serializable."
)
json.dump(json_content, f)
elif file_type == "md" or file_type == "txt":
f.write(file_content)
else:
raise ValueError(f"Unsupported file type: {file_type}")
temp_file_path = f.name
try:
self.api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=filepath,
repo_id=dataset_name,
repo_type=HuggingFaceRepoType.DATASET.value,
**kwargs,
)
logger.info(f"File uploaded successfully: {filepath}")
except Exception as e:
logger.error(f"Error uploading file: {e}")
raise
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
|