File size: 6,816 Bytes
4057aa4
 
 
 
 
 
 
 
 
 
 
 
 
b0ecc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4057aa4
b0ecc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4057aa4
 
 
 
 
 
b0ecc50
 
 
 
 
4057aa4
 
 
 
 
 
 
 
 
b0ecc50
 
 
 
 
 
 
 
 
 
 
 
 
 
4057aa4
b0ecc50
 
 
 
 
 
 
 
4057aa4
b0ecc50
4057aa4
b0ecc50
4057aa4
 
b0ecc50
 
 
 
 
4057aa4
b0ecc50
4057aa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import logging
import json

from dotenv import load_dotenv
from camel.models import ModelFactory
from camel.types import ModelPlatformType

from camel.toolkits import (
    SearchToolkit,
    BrowserToolkit,
)
from camel.societies import RolePlaying
from camel.logger import set_log_level, get_logger

import pathlib

base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))

set_log_level(level="DEBUG")
logger = get_logger(__name__)
file_handler = logging.FileHandler("learning_journey.log")
file_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)

root_logger = logging.getLogger()
root_logger.addHandler(file_handler)


def construct_learning_society(task: str) -> RolePlaying:
    """Construct a society of agents for the learning journey companion.

    Args:
        task (str): The learning task description including what the user wants to learn and what they already know.

    Returns:
        RolePlaying: A configured society of agents for the learning companion.
    """
    models = {
        "user": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
            model_type="gpt-4o",
            api_key=os.getenv("OPENAI_API_KEY"),
            model_config_dict={"temperature": 0.4},
        ),
        "assistant": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
            model_type="gpt-4o",
            api_key=os.getenv("OPENAI_API_KEY"),
            model_config_dict={"temperature": 0.4},
        ),
        "content_researcher": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
            model_type="gpt-4o",
            api_key=os.getenv("OPENAI_API_KEY"),
            model_config_dict={"temperature": 0.2},
        ),
        "planning": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
            model_type="gpt-4o",
            api_key=os.getenv("OPENAI_API_KEY"),
            model_config_dict={"temperature": 0.3},
        ),
    }

    browser_toolkit = BrowserToolkit(
        headless=False,
        web_agent_model=models["content_researcher"],
        planning_agent_model=models["planning"],
    )

    tools = [
        *browser_toolkit.get_tools(),
        SearchToolkit().search_duckduckgo,
    ]

    user_agent_kwargs = {
        "model": models["user"],
    }

    assistant_agent_kwargs = {
        "model": models["assistant"],
        "tools": tools,
    }

    task_kwargs = {
        "task_prompt": task,
        "with_task_specify": False,
    }

    society = RolePlaying(
        **task_kwargs,
        user_role_name="learner",
        user_agent_kwargs=user_agent_kwargs,
        assistant_role_name="learning_companion",
        assistant_agent_kwargs=assistant_agent_kwargs,
    )

    return society


def analyze_chat_history(chat_history):
    """Analyze chat history and extract tool call information."""
    print("\n============ Tool Call Analysis ============")
    logger.info("========== Starting tool call analysis ==========")

    tool_calls = []
    for i, message in enumerate(chat_history):
        if message.get("role") == "assistant" and "tool_calls" in message:
            for tool_call in message.get("tool_calls", []):
                if tool_call.get("type") == "function":
                    function = tool_call.get("function", {})
                    tool_info = {
                        "call_id": tool_call.get("id"),
                        "name": function.get("name"),
                        "arguments": function.get("arguments"),
                        "message_index": i,
                    }
                    tool_calls.append(tool_info)
                    print(
                        f"Tool Call: {function.get('name')} Args: {function.get('arguments')}"
                    )
                    logger.info(
                        f"Tool Call: {function.get('name')} Args: {function.get('arguments')}"
                    )

        elif message.get("role") == "tool" and "tool_call_id" in message:
            for tool_call in tool_calls:
                if tool_call.get("call_id") == message.get("tool_call_id"):
                    result = message.get("content", "")
                    result_summary = (
                        result[:100] + "..." if len(result) > 100 else result
                    )
                    print(
                        f"Tool Result: {tool_call.get('name')} Return: {result_summary}"
                    )
                    logger.info(
                        f"Tool Result: {tool_call.get('name')} Return: {result_summary}"
                    )

    print(f"Total tool calls found: {len(tool_calls)}")
    logger.info(f"Total tool calls found: {len(tool_calls)}")
    logger.info("========== Finished tool call analysis ==========")

    with open("learning_journey_history.json", "w", encoding="utf-8") as f:
        json.dump(chat_history, f, ensure_ascii=False, indent=2)

    print("Records saved to learning_journey_history.json")
    print("============ Analysis Complete ============\n")


def run_learning_companion(task: str = None):
    """Run the learning companion with the given task.

    Args:
        task (str, optional): The learning task description. Defaults to an example task.
    """
    task = """
    I want to learn about the transformers architecture in an llm.  
    I've also taken a basic statistics course. 
    I have about 10 hours per week to dedicate to learning. Devise a roadmap for me .
    """

    society = construct_learning_society(task)

    from owl.utils import run_society

    answer, chat_history, token_count = run_society(society, round_limit=5)

    # Record tool usage history
    analyze_chat_history(chat_history)
    print(f"\033[94mAnswer: {answer}\033[0m")


if __name__ == "__main__":
    run_learning_companion()