File size: 10,036 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, List, Optional, Union
from openai import OpenAI, _legacy_response
from camel.types import AudioModelType, VoiceType
class OpenAIAudioModels:
r"""Provides access to OpenAI's Text-to-Speech (TTS) and Speech_to_Text
(STT) models."""
def __init__(
self,
api_key: Optional[str] = None,
url: Optional[str] = None,
) -> None:
r"""Initialize an instance of OpenAI."""
self._url = url or os.environ.get("OPENAI_API_BASE_URL")
self._api_key = api_key or os.environ.get("OPENAI_API_KEY")
self._client = OpenAI(
timeout=120,
max_retries=3,
base_url=self._url,
api_key=self._api_key,
)
def text_to_speech(
self,
input: str,
model_type: AudioModelType = AudioModelType.TTS_1,
voice: VoiceType = VoiceType.ALLOY,
storage_path: Optional[str] = None,
**kwargs: Any,
) -> Union[
List[_legacy_response.HttpxBinaryResponseContent],
_legacy_response.HttpxBinaryResponseContent,
]:
r"""Convert text to speech using OpenAI's TTS model. This method
converts the given input text to speech using the specified model and
voice.
Args:
input (str): The text to be converted to speech.
model_type (AudioModelType, optional): The TTS model to use.
Defaults to `AudioModelType.TTS_1`.
voice (VoiceType, optional): The voice to be used for generating
speech. Defaults to `VoiceType.ALLOY`.
storage_path (str, optional): The local path to store the
generated speech file if provided, defaults to `None`.
**kwargs (Any): Extra kwargs passed to the TTS API.
Returns:
Union[List[_legacy_response.HttpxBinaryResponseContent],
_legacy_response.HttpxBinaryResponseContent]: List of response
content object from OpenAI if input charaters more than 4096,
single response content if input charaters less than 4096.
Raises:
Exception: If there's an error during the TTS API call.
"""
try:
# Model only support at most 4096 characters one time.
max_chunk_size = 4095
audio_chunks = []
chunk_index = 0
if len(input) > max_chunk_size:
while input:
if len(input) <= max_chunk_size:
chunk = input
input = ''
else:
# Find the nearest period before the chunk size limit
while input[max_chunk_size - 1] != '.':
max_chunk_size -= 1
chunk = input[:max_chunk_size]
input = input[max_chunk_size:].lstrip()
response = self._client.audio.speech.create(
model=model_type.value,
voice=voice.value,
input=chunk,
**kwargs,
)
if storage_path:
try:
# Create a new storage path for each chunk
file_name, file_extension = os.path.splitext(
storage_path
)
new_storage_path = (
f"{file_name}_{chunk_index}{file_extension}"
)
response.write_to_file(new_storage_path)
chunk_index += 1
except Exception as e:
raise Exception(
"Error during writing the file"
) from e
audio_chunks.append(response)
return audio_chunks
else:
response = self._client.audio.speech.create(
model=model_type.value,
voice=voice.value,
input=input,
**kwargs,
)
if storage_path:
try:
response.write_to_file(storage_path)
except Exception as e:
raise Exception("Error during write the file") from e
return response
except Exception as e:
raise Exception("Error during TTS API call") from e
def _split_audio(
self, audio_file_path: str, chunk_size_mb: int = 24
) -> list:
r"""Split the audio file into smaller chunks. Since the Whisper API
only supports files that are less than 25 MB.
Args:
audio_file_path (str): Path to the input audio file.
chunk_size_mb (int, optional): Size of each chunk in megabytes.
Defaults to `24`.
Returns:
list: List of paths to the split audio files.
"""
from pydub import AudioSegment
audio = AudioSegment.from_file(audio_file_path)
audio_format = os.path.splitext(audio_file_path)[1][1:].lower()
# Calculate chunk size in bytes
chunk_size_bytes = chunk_size_mb * 1024 * 1024
# Number of chunks needed
num_chunks = os.path.getsize(audio_file_path) // chunk_size_bytes + 1
# Create a directory to store the chunks
output_dir = os.path.splitext(audio_file_path)[0] + "_chunks"
os.makedirs(output_dir, exist_ok=True)
# Get audio chunk len in milliseconds
chunk_size_milliseconds = len(audio) // (num_chunks)
# Split the audio into chunks
split_files = []
for i in range(num_chunks):
start = i * chunk_size_milliseconds
end = (i + 1) * chunk_size_milliseconds
if i + 1 == num_chunks:
chunk = audio[start:]
else:
chunk = audio[start:end]
# Create new chunk path
chunk_path = os.path.join(output_dir, f"chunk_{i}.{audio_format}")
chunk.export(chunk_path, format=audio_format)
split_files.append(chunk_path)
return split_files
def speech_to_text(
self,
audio_file_path: str,
translate_into_english: bool = False,
**kwargs: Any,
) -> str:
r"""Convert speech audio to text.
Args:
audio_file_path (str): The audio file path, supporting one of
these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or
webm.
translate_into_english (bool, optional): Whether to translate the
speech into English. Defaults to `False`.
**kwargs (Any): Extra keyword arguments passed to the
Speech-to-Text (STT) API.
Returns:
str: The output text.
Raises:
ValueError: If the audio file format is not supported.
Exception: If there's an error during the STT API call.
"""
supported_formats = [
"flac",
"mp3",
"mp4",
"mpeg",
"mpga",
"m4a",
"ogg",
"wav",
"webm",
]
file_format = audio_file_path.split(".")[-1].lower()
if file_format not in supported_formats:
raise ValueError(f"Unsupported audio file format: {file_format}")
try:
if os.path.getsize(audio_file_path) > 24 * 1024 * 1024:
# Split audio into chunks
audio_chunks = self._split_audio(audio_file_path)
texts = []
for chunk_path in audio_chunks:
audio_data = open(chunk_path, "rb")
if translate_into_english:
translation = self._client.audio.translations.create(
model="whisper-1", file=audio_data, **kwargs
)
texts.append(translation.text)
else:
transcription = (
self._client.audio.transcriptions.create(
model="whisper-1", file=audio_data, **kwargs
)
)
texts.append(transcription.text)
os.remove(chunk_path) # Delete temporary chunk file
return " ".join(texts)
else:
# Process the entire audio file
audio_data = open(audio_file_path, "rb")
if translate_into_english:
translation = self._client.audio.translations.create(
model="whisper-1", file=audio_data, **kwargs
)
return translation.text
else:
transcription = self._client.audio.transcriptions.create(
model="whisper-1", file=audio_data, **kwargs
)
return transcription.text
except Exception as e:
raise Exception("Error during STT API call") from e
|