File size: 19,613 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import base64
import io
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, Union
import numpy as np
from PIL import Image
from pydantic import BaseModel
from camel.messages import (
FunctionCallFormatter,
HermesFunctionFormatter,
OpenAIAssistantMessage,
OpenAIMessage,
OpenAISystemMessage,
OpenAIUserMessage,
)
from camel.messages.conversion import ShareGPTMessage
from camel.prompts import CodePrompt, TextPrompt
from camel.types import (
OpenAIBackendRole,
OpenAIImageType,
OpenAIVisionDetailType,
RoleType,
)
from camel.utils import Constants
@dataclass
class BaseMessage:
r"""Base class for message objects used in CAMEL chat system.
Args:
role_name (str): The name of the user or assistant role.
role_type (RoleType): The type of role, either :obj:`RoleType.
ASSISTANT` or :obj:`RoleType.USER`.
meta_dict (Optional[Dict[str, str]]): Additional metadata dictionary
for the message.
content (str): The content of the message.
video_bytes (Optional[bytes]): Optional bytes of a video associated
with the message. (default: :obj:`None`)
image_list (Optional[List[Image.Image]]): Optional list of PIL Image
objects associated with the message. (default: :obj:`None`)
image_detail (Literal["auto", "low", "high"]): Detail level of the
images associated with the message. (default: :obj:`auto`)
video_detail (Literal["auto", "low", "high"]): Detail level of the
videos associated with the message. (default: :obj:`low`)
parsed: Optional[Union[Type[BaseModel], dict]]: Optional object which
is parsed from the content. (default: :obj:`None`)
"""
role_name: str
role_type: RoleType
meta_dict: Optional[Dict[str, Any]]
content: str
video_bytes: Optional[bytes] = None
image_list: Optional[List[Image.Image]] = None
image_detail: Literal["auto", "low", "high"] = "auto"
video_detail: Literal["auto", "low", "high"] = "low"
parsed: Optional[Union[Type[BaseModel], dict]] = None
@classmethod
def make_user_message(
cls,
role_name: str,
content: str,
meta_dict: Optional[Dict[str, str]] = None,
video_bytes: Optional[bytes] = None,
image_list: Optional[List[Image.Image]] = None,
image_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.AUTO,
video_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.LOW,
) -> "BaseMessage":
r"""Create a new user message.
Args:
role_name (str): The name of the user role.
content (str): The content of the message.
meta_dict (Optional[Dict[str, str]]): Additional metadata
dictionary for the message.
video_bytes (Optional[bytes]): Optional bytes of a video
associated with the message.
image_list (Optional[List[Image.Image]]): Optional list of PIL
Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the videos associated with the message.
Returns:
BaseMessage: The new user message.
"""
return cls(
role_name,
RoleType.USER,
meta_dict,
content,
video_bytes,
image_list,
OpenAIVisionDetailType(image_detail).value,
OpenAIVisionDetailType(video_detail).value,
)
@classmethod
def make_assistant_message(
cls,
role_name: str,
content: str,
meta_dict: Optional[Dict[str, str]] = None,
video_bytes: Optional[bytes] = None,
image_list: Optional[List[Image.Image]] = None,
image_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.AUTO,
video_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.LOW,
) -> "BaseMessage":
r"""Create a new assistant message.
Args:
role_name (str): The name of the assistant role.
content (str): The content of the message.
meta_dict (Optional[Dict[str, str]]): Additional metadata
dictionary for the message.
video_bytes (Optional[bytes]): Optional bytes of a video
associated with the message.
image_list (Optional[List[Image.Image]]): Optional list of PIL
Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the videos associated with the message.
Returns:
BaseMessage: The new assistant message.
"""
return cls(
role_name,
RoleType.ASSISTANT,
meta_dict,
content,
video_bytes,
image_list,
OpenAIVisionDetailType(image_detail).value,
OpenAIVisionDetailType(video_detail).value,
)
def create_new_instance(self, content: str) -> "BaseMessage":
r"""Create a new instance of the :obj:`BaseMessage` with updated
content.
Args:
content (str): The new content value.
Returns:
BaseMessage: The new instance of :obj:`BaseMessage`.
"""
return self.__class__(
role_name=self.role_name,
role_type=self.role_type,
meta_dict=self.meta_dict,
content=content,
)
def __add__(self, other: Any) -> Union["BaseMessage", Any]:
r"""Addition operator override for :obj:`BaseMessage`.
Args:
other (Any): The value to be added with.
Returns:
Union[BaseMessage, Any]: The result of the addition.
"""
if isinstance(other, BaseMessage):
combined_content = self.content.__add__(other.content)
elif isinstance(other, str):
combined_content = self.content.__add__(other)
else:
raise TypeError(
f"Unsupported operand type(s) for +: '{type(self)}' and "
f"'{type(other)}'"
)
return self.create_new_instance(combined_content)
def __mul__(self, other: Any) -> Union["BaseMessage", Any]:
r"""Multiplication operator override for :obj:`BaseMessage`.
Args:
other (Any): The value to be multiplied with.
Returns:
Union[BaseMessage, Any]: The result of the multiplication.
"""
if isinstance(other, int):
multiplied_content = self.content.__mul__(other)
return self.create_new_instance(multiplied_content)
else:
raise TypeError(
f"Unsupported operand type(s) for *: '{type(self)}' and "
f"'{type(other)}'"
)
def __len__(self) -> int:
r"""Length operator override for :obj:`BaseMessage`.
Returns:
int: The length of the content.
"""
return len(self.content)
def __contains__(self, item: str) -> bool:
r"""Contains operator override for :obj:`BaseMessage`.
Args:
item (str): The item to check for containment.
Returns:
bool: :obj:`True` if the item is contained in the content,
:obj:`False` otherwise.
"""
return item in self.content
def extract_text_and_code_prompts(
self,
) -> Tuple[List[TextPrompt], List[CodePrompt]]:
r"""Extract text and code prompts from the message content.
Returns:
Tuple[List[TextPrompt], List[CodePrompt]]: A tuple containing a
list of text prompts and a list of code prompts extracted
from the content.
"""
text_prompts: List[TextPrompt] = []
code_prompts: List[CodePrompt] = []
lines = self.content.split("\n")
idx = 0
start_idx = 0
while idx < len(lines):
while idx < len(lines) and (
not lines[idx].lstrip().startswith("```")
):
idx += 1
text = "\n".join(lines[start_idx:idx]).strip()
text_prompts.append(TextPrompt(text))
if idx >= len(lines):
break
code_type = lines[idx].strip()[3:].strip()
idx += 1
start_idx = idx
while not lines[idx].lstrip().startswith("```"):
idx += 1
code = "\n".join(lines[start_idx:idx]).strip()
code_prompts.append(CodePrompt(code, code_type=code_type))
idx += 1
start_idx = idx
return text_prompts, code_prompts
@classmethod
def from_sharegpt(
cls,
message: ShareGPTMessage,
function_format: Optional[FunctionCallFormatter[Any, Any]] = None,
role_mapping=None,
) -> "BaseMessage":
r"""Convert ShareGPT message to BaseMessage or FunctionCallingMessage.
Note tool calls and responses have an 'assistant' role in CAMEL
Args:
message (ShareGPTMessage): ShareGPT message to convert.
function_format (FunctionCallFormatter, optional): Function call
formatter to use. (default: :obj:`HermesFunctionFormatter()`.
role_mapping (Dict[str, List[str, RoleType]], optional): Role
mapping to use. Defaults to a CAMEL specific mapping.
Returns:
BaseMessage: Converted message.
"""
from camel.messages import FunctionCallingMessage
if role_mapping is None:
role_mapping = {
"system": ["system", RoleType.USER],
"human": ["user", RoleType.USER],
"gpt": ["assistant", RoleType.ASSISTANT],
"tool": ["assistant", RoleType.ASSISTANT],
}
role_name, role_type = role_mapping[message.from_]
if function_format is None:
function_format = HermesFunctionFormatter()
# Check if this is a function-related message
if message.from_ == "gpt":
func_info = function_format.extract_tool_calls(message.value)
if (
func_info and len(func_info) == 1
): # TODO: Handle multiple tool calls
# Including cleaned content is useful to
# remind consumers of non-considered content
clean_content = re.sub(
r"<tool_call>.*?</tool_call>",
"",
message.value,
flags=re.DOTALL,
).strip()
return FunctionCallingMessage(
role_name=role_name,
role_type=role_type,
meta_dict=None,
content=clean_content,
func_name=func_info[0].__dict__["name"],
args=func_info[0].__dict__["arguments"],
)
elif message.from_ == "tool":
func_r_info = function_format.extract_tool_response(message.value)
if func_r_info:
return FunctionCallingMessage(
role_name=role_name,
role_type=role_type,
meta_dict=None,
content="",
func_name=func_r_info.__dict__["name"],
result=func_r_info.__dict__["content"],
)
# Regular message
return cls(
role_name=role_name,
role_type=role_type,
meta_dict=None,
content=message.value,
)
def to_sharegpt(
self,
function_format: Optional[FunctionCallFormatter] = None,
) -> ShareGPTMessage:
r"""Convert BaseMessage to ShareGPT message
Args:
function_format (FunctionCallFormatter): Function call formatter
to use. Defaults to Hermes.
"""
if function_format is None:
function_format = HermesFunctionFormatter()
# Convert role type to ShareGPT 'from' field
if self.role_type == RoleType.USER:
from_ = "system" if self.role_name == "system" else "human"
else: # RoleType.ASSISTANT
from_ = "gpt"
# Function conversion code in FunctionCallingMessage
return ShareGPTMessage(from_=from_, value=self.content) # type: ignore[call-arg]
def to_openai_message(
self,
role_at_backend: OpenAIBackendRole,
) -> OpenAIMessage:
r"""Converts the message to an :obj:`OpenAIMessage` object.
Args:
role_at_backend (OpenAIBackendRole): The role of the message in
OpenAI chat system.
Returns:
OpenAIMessage: The converted :obj:`OpenAIMessage` object.
"""
if role_at_backend == OpenAIBackendRole.SYSTEM:
return self.to_openai_system_message()
elif role_at_backend == OpenAIBackendRole.USER:
return self.to_openai_user_message()
elif role_at_backend == OpenAIBackendRole.ASSISTANT:
return self.to_openai_assistant_message()
else:
raise ValueError(f"Unsupported role: {role_at_backend}.")
def to_openai_system_message(self) -> OpenAISystemMessage:
r"""Converts the message to an :obj:`OpenAISystemMessage` object.
Returns:
OpenAISystemMessage: The converted :obj:`OpenAISystemMessage`
object.
"""
return {"role": "system", "content": self.content}
def to_openai_user_message(self) -> OpenAIUserMessage:
r"""Converts the message to an :obj:`OpenAIUserMessage` object.
Returns:
OpenAIUserMessage: The converted :obj:`OpenAIUserMessage` object.
"""
hybird_content: List[Any] = []
hybird_content.append(
{
"type": "text",
"text": self.content,
}
)
if self.image_list and len(self.image_list) > 0:
for image in self.image_list:
if image.format is None:
raise ValueError(
f"Image's `format` is `None`, please "
f"transform the `PIL.Image.Image` to one of "
f"following supported formats, such as "
f"{list(OpenAIImageType)}"
)
image_type: str = image.format.lower()
if image_type not in OpenAIImageType:
raise ValueError(
f"Image type {image.format} "
f"is not supported by OpenAI vision model"
)
with io.BytesIO() as buffer:
image.save(fp=buffer, format=image.format)
encoded_image = base64.b64encode(buffer.getvalue()).decode(
"utf-8"
)
image_prefix = f"data:image/{image_type};base64,"
hybird_content.append(
{
"type": "image_url",
"image_url": {
"url": f"{image_prefix}{encoded_image}",
"detail": self.image_detail,
},
}
)
if self.video_bytes:
import imageio.v3 as iio
base64Frames: List[str] = []
frame_count = 0
# read video bytes
video = iio.imiter(
self.video_bytes, plugin=Constants.VIDEO_DEFAULT_PLUG_PYAV
)
for frame in video:
frame_count += 1
if (
frame_count % Constants.VIDEO_IMAGE_EXTRACTION_INTERVAL
== 0
):
# convert frame to numpy array
frame_array = np.asarray(frame)
frame_image = Image.fromarray(frame_array)
# Get the dimensions of the frame
width, height = frame_image.size
# resize the frame to the default image size
new_width = Constants.VIDEO_DEFAULT_IMAGE_SIZE
aspect_ratio = width / height
new_height = int(new_width / aspect_ratio)
resized_img = frame_image.resize((new_width, new_height))
# encode the image to base64
with io.BytesIO() as buffer:
image_format = OpenAIImageType.JPEG.value
image_format = image_format.upper()
resized_img.save(fp=buffer, format=image_format)
encoded_image = base64.b64encode(
buffer.getvalue()
).decode("utf-8")
base64Frames.append(encoded_image)
for encoded_image in base64Frames:
item = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}",
"detail": self.video_detail,
},
}
hybird_content.append(item)
if len(hybird_content) > 1:
return {
"role": "user",
"content": hybird_content,
}
# This return just for str message
else:
return {
"role": "user",
"content": self.content,
}
def to_openai_assistant_message(self) -> OpenAIAssistantMessage:
r"""Converts the message to an :obj:`OpenAIAssistantMessage` object.
Returns:
OpenAIAssistantMessage: The converted :obj:`OpenAIAssistantMessage`
object.
"""
return {"role": "assistant", "content": self.content}
def to_dict(self) -> Dict:
r"""Converts the message to a dictionary.
Returns:
dict: The converted dictionary.
"""
return {
"role_name": self.role_name,
"role_type": self.role_type.name,
**(self.meta_dict or {}),
"content": self.content,
} |