File size: 7,536 Bytes
62da328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, List, Optional

from colorama import Fore

from camel.agents.chat_agent import ChatAgent
from camel.agents.tool_agents.base import BaseToolAgent
from camel.interpreters import (
    BaseInterpreter,
    InternalPythonInterpreter,
    SubprocessInterpreter,
)
from camel.messages import BaseMessage
from camel.models import BaseModelBackend
from camel.responses import ChatAgentResponse
from camel.utils import print_text_animated

# AgentOps decorator setting
try:
    import os

    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import track_agent
    else:
        raise ImportError
except (ImportError, AttributeError):
    from camel.utils import track_agent


@track_agent(name="EmbodiedAgent")
class EmbodiedAgent(ChatAgent):
    r"""Class for managing conversations of CAMEL Embodied Agents.

    Args:
        system_message (BaseMessage): The system message for the chat agent.
        model (BaseModelBackend, optional): The model backend to use for
            generating responses. (default: :obj:`OpenAIModel` with
            `GPT_4O_MINI`)
        message_window_size (int, optional): The maximum number of previous
            messages to include in the context window. If `None`, no windowing
            is performed. (default: :obj:`None`)
        tool_agents (List[BaseToolAgent], optional): The tools agents to use in
            the embodied agent. (default: :obj:`None`)
        code_interpreter (BaseInterpreter, optional): The code interpreter to
            execute codes. If `code_interpreter` and `tool_agent` are both
            `None`, default to `SubProcessInterpreter`. If `code_interpreter`
            is `None` and `tool_agents` is not `None`, default to
            `InternalPythonInterpreter`.  (default: :obj:`None`)
        verbose (bool, optional): Whether to print the critic's messages.
        logger_color (Any): The color of the logger displayed to the user.
            (default: :obj:`Fore.MAGENTA`)
    """

    def __init__(
        self,
        system_message: BaseMessage,
        model: Optional[BaseModelBackend] = None,
        message_window_size: Optional[int] = None,
        tool_agents: Optional[List[BaseToolAgent]] = None,
        code_interpreter: Optional[BaseInterpreter] = None,
        verbose: bool = False,
        logger_color: Any = Fore.MAGENTA,
    ) -> None:
        self.tool_agents = tool_agents
        self.code_interpreter: BaseInterpreter
        if code_interpreter is not None:
            self.code_interpreter = code_interpreter
        elif self.tool_agents:
            self.code_interpreter = InternalPythonInterpreter()
        else:
            self.code_interpreter = SubprocessInterpreter()

        if self.tool_agents:
            system_message = self._set_tool_agents(system_message)
        self.verbose = verbose
        self.logger_color = logger_color
        super().__init__(
            system_message=system_message,
            model=model,
            message_window_size=message_window_size,
        )

    def _set_tool_agents(self, system_message: BaseMessage) -> BaseMessage:
        action_space_prompt = self._get_tool_agents_prompt()
        result_message = system_message.create_new_instance(
            content=system_message.content.format(
                action_space=action_space_prompt
            )
        )
        if self.tool_agents is not None:
            self.code_interpreter.update_action_space(
                {tool.name: tool for tool in self.tool_agents}
            )
        return result_message

    def _get_tool_agents_prompt(self) -> str:
        r"""Returns the action space prompt.

        Returns:
            str: The action space prompt.
        """
        if self.tool_agents is not None:
            return "\n".join(
                [
                    f"*** {tool.name} ***:\n {tool.description}"
                    for tool in self.tool_agents
                ]
            )
        else:
            return ""

    def get_tool_agent_names(self) -> List[str]:
        r"""Returns the names of tool agents.

        Returns:
            List[str]: The names of tool agents.
        """
        if self.tool_agents is not None:
            return [tool.name for tool in self.tool_agents]
        else:
            return []

    # ruff: noqa: E501
    def step(self, input_message: BaseMessage) -> ChatAgentResponse:  # type: ignore[override]
        r"""Performs a step in the conversation.

        Args:
            input_message (BaseMessage): The input message.

        Returns:
            ChatAgentResponse: A struct containing the output messages,
                a boolean indicating whether the chat session has terminated,
                and information about the chat session.
        """
        response = super().step(input_message)

        if response.msgs is None or len(response.msgs) == 0:
            raise RuntimeError("Got None output messages.")
        if response.terminated:
            raise RuntimeError(f"{self.__class__.__name__} step failed.")

        # NOTE: Only single output messages are supported
        explanations, codes = response.msg.extract_text_and_code_prompts()

        if self.verbose:
            for explanation, code in zip(explanations, codes):
                print_text_animated(
                    self.logger_color + f"> Explanation:\n{explanation}"
                )
                print_text_animated(self.logger_color + f"> Code:\n{code}")

            if len(explanations) > len(codes):
                print_text_animated(
                    self.logger_color + f"> Explanation:\n{explanations[-1]}"
                )

        content = response.msg.content

        if codes is not None:
            try:
                content = "\n> Executed Results:\n"
                for block_idx, code in enumerate(codes):
                    executed_output = self.code_interpreter.run(
                        code, code.code_type
                    )
                    content += (
                        f"Executing code block {block_idx}: {{\n"
                        + executed_output
                        + "}\n"
                    )
            except InterruptedError as e:
                content = (
                    f"\n> Running code fail: {e}\n"
                    "Please regenerate the code."
                )

        # TODO: Handle errors
        content = input_message.content + f"\n> Embodied Actions:\n{content}"
        message = BaseMessage(
            input_message.role_name,
            input_message.role_type,
            input_message.meta_dict,
            content,
        )
        return ChatAgentResponse(
            msgs=[message],
            terminated=response.terminated,
            info=response.info,
        )