Update app.py
Browse files
app.py
CHANGED
@@ -19,60 +19,89 @@ from huggingface_hub import login
|
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
|
|
22 |
PORT = int(os.environ.get("PORT", 7860))
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
ALLOWED_EXTENSIONS = {'py'}
|
30 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
31 |
-
|
32 |
# Database configuration
|
33 |
DATABASE_PATH = '/tmp/chat_database.db'
|
34 |
-
CACHE_DIR = "/tmp/huggingface_cache"
|
35 |
-
MODEL_CACHE_DIR = "/tmp/model_cache"
|
36 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
37 |
-
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
38 |
-
os.environ['TRANSFORMERS_CACHE'] = CACHE_DIR
|
39 |
-
os.environ['HF_HOME'] = CACHE_DIR
|
40 |
-
os.environ['HF_DATASETS_CACHE'] = CACHE_DIR
|
41 |
-
|
42 |
-
# Initialize LangChain with Ollama LLM
|
43 |
-
if hf_token:
|
44 |
-
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
45 |
-
else:
|
46 |
-
# Fallback to a free, smaller model
|
47 |
-
model_name = "microsoft/phi-4"
|
48 |
-
|
49 |
-
try:
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=CACHE_DIR)
|
51 |
-
model = AutoModelForCausalLM.from_pretrained(
|
52 |
-
model_name,
|
53 |
-
torch_dtype=torch.float16,
|
54 |
-
device_map="auto",
|
55 |
-
load_in_8bit=True,
|
56 |
-
cache_dir=MODEL_CACHE_DIR
|
57 |
-
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
raise
|
76 |
|
77 |
@contextmanager
|
78 |
def get_db_connection():
|
|
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
22 |
+
# Configuration for Hugging Face Spaces
|
23 |
PORT = int(os.environ.get("PORT", 7860))
|
24 |
|
25 |
+
# Set cache directories to /tmp
|
26 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
|
27 |
+
os.environ['HF_HOME'] = '/tmp/hf_home'
|
28 |
+
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'
|
29 |
+
os.environ['HF_DATASETS_CACHE'] = '/tmp/datasets_cache'
|
30 |
+
|
31 |
+
# Create necessary directories with proper permissions
|
32 |
+
for directory in [
|
33 |
+
'/tmp/transformers_cache',
|
34 |
+
'/tmp/hf_home',
|
35 |
+
'/tmp/cache',
|
36 |
+
'/tmp/datasets_cache',
|
37 |
+
'/tmp/uploads'
|
38 |
+
]:
|
39 |
+
os.makedirs(directory, exist_ok=True)
|
40 |
+
|
41 |
+
# Configure upload folder inside the space
|
42 |
+
UPLOAD_FOLDER = '/tmp/uploads'
|
43 |
ALLOWED_EXTENSIONS = {'py'}
|
44 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
45 |
+
|
46 |
# Database configuration
|
47 |
DATABASE_PATH = '/tmp/chat_database.db'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
def get_model_name():
|
50 |
+
"""Determine which model to use based on token availability"""
|
51 |
+
try:
|
52 |
+
hf_token = os.environ.get("HF_TOKEN")
|
53 |
+
if hf_token:
|
54 |
+
# Set token in environment and return gated model name
|
55 |
+
os.environ['HUGGING_FACE_HUB_TOKEN'] = hf_token
|
56 |
+
return "mistralai/Mistral-7B-Instruct-v0.1"
|
57 |
+
else:
|
58 |
+
# Return free model if no token
|
59 |
+
return "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error accessing token: {e}")
|
62 |
+
return "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
63 |
|
64 |
+
def initialize_model():
|
65 |
+
"""Initialize the model with appropriate settings"""
|
66 |
+
try:
|
67 |
+
model_name = get_model_name()
|
68 |
+
print(f"Initializing model: {model_name}")
|
69 |
+
|
70 |
+
# Initialize tokenizer with explicit cache directory
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
72 |
+
model_name,
|
73 |
+
cache_dir='/tmp/transformers_cache',
|
74 |
+
token=os.environ.get('HUGGING_FACE_HUB_TOKEN')
|
75 |
+
)
|
76 |
+
|
77 |
+
# Initialize model with explicit cache directory
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
model_name,
|
80 |
+
cache_dir='/tmp/transformers_cache',
|
81 |
+
token=os.environ.get('HUGGING_FACE_HUB_TOKEN'),
|
82 |
+
torch_dtype=torch.float16,
|
83 |
+
device_map="auto",
|
84 |
+
load_in_8bit=True
|
85 |
+
)
|
86 |
+
|
87 |
+
# Create pipeline
|
88 |
+
pipe = pipeline(
|
89 |
+
"text-generation",
|
90 |
+
model=model,
|
91 |
+
tokenizer=tokenizer,
|
92 |
+
max_new_tokens=512,
|
93 |
+
temperature=0.7,
|
94 |
+
top_p=0.95,
|
95 |
+
repetition_penalty=1.15
|
96 |
+
)
|
97 |
+
|
98 |
+
return HuggingFacePipeline(pipeline=pipe)
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error initializing model: {e}")
|
101 |
+
raise
|
102 |
|
103 |
+
# Initialize LLM
|
104 |
+
llm = initialize_model()
|
|
|
105 |
|
106 |
@contextmanager
|
107 |
def get_db_connection():
|