Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ from flask import Flask, render_template, request, jsonify
|
|
2 |
import subprocess
|
3 |
import tempfile
|
4 |
import os
|
|
|
5 |
from langchain_community.llms import HuggingFacePipeline
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain.chains import LLMChain
|
@@ -15,167 +16,118 @@ import re
|
|
15 |
from werkzeug.utils import secure_filename
|
16 |
import torch
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
18 |
-
from huggingface_hub import login
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
22 |
# Configuration for Hugging Face Spaces
|
23 |
PORT = int(os.environ.get("PORT", 7860))
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
os.
|
28 |
-
os.environ['
|
29 |
-
os.environ['
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
'/tmp/transformers_cache',
|
34 |
-
'/tmp/hf_home',
|
35 |
-
'/tmp/cache',
|
36 |
-
'/tmp/datasets_cache',
|
37 |
-
'/tmp/uploads'
|
38 |
-
]:
|
39 |
-
os.makedirs(directory, exist_ok=True)
|
40 |
-
|
41 |
-
# Configure upload folder inside the space
|
42 |
UPLOAD_FOLDER = '/tmp/uploads'
|
43 |
ALLOWED_EXTENSIONS = {'py'}
|
44 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
45 |
|
46 |
# Database configuration
|
47 |
DATABASE_PATH = '/tmp/chat_database.db'
|
48 |
|
49 |
-
def get_model_name():
|
50 |
-
"""Determine which model to use based on token availability"""
|
51 |
-
try:
|
52 |
-
hf_token = os.environ.get("HF_TOKEN")
|
53 |
-
if hf_token:
|
54 |
-
# Set token in environment and return gated model name
|
55 |
-
os.environ['HUGGING_FACE_HUB_TOKEN'] = hf_token
|
56 |
-
return "mistralai/Mistral-7B-Instruct-v0.1"
|
57 |
-
else:
|
58 |
-
# Return free model if no token
|
59 |
-
return "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
60 |
-
except Exception as e:
|
61 |
-
print(f"Error accessing token: {e}")
|
62 |
-
return "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
63 |
-
|
64 |
def initialize_model():
|
65 |
"""Initialize the model with appropriate settings"""
|
66 |
try:
|
67 |
-
#
|
68 |
-
model_name = "
|
69 |
print(f"Initializing model: {model_name}")
|
70 |
|
71 |
-
# Initialize tokenizer
|
72 |
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
model_name,
|
74 |
-
cache_dir=
|
75 |
-
|
76 |
)
|
77 |
|
78 |
-
# Initialize model with
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
80 |
model_name,
|
81 |
-
cache_dir=
|
82 |
-
|
83 |
torch_dtype=torch.float16,
|
84 |
-
|
85 |
-
load_in_8bit=True
|
86 |
)
|
87 |
|
88 |
-
# Create pipeline
|
89 |
pipe = pipeline(
|
90 |
"text-generation",
|
91 |
model=model,
|
92 |
tokenizer=tokenizer,
|
93 |
-
max_new_tokens=
|
94 |
-
do_sample=True,
|
95 |
temperature=0.7,
|
96 |
top_p=0.95,
|
97 |
repetition_penalty=1.15,
|
98 |
-
|
99 |
)
|
100 |
|
101 |
return HuggingFacePipeline(pipeline=pipe)
|
102 |
except Exception as e:
|
103 |
print(f"Error initializing model: {e}")
|
104 |
-
|
105 |
-
try:
|
106 |
-
model_name = "facebook/opt-125m"
|
107 |
-
print(f"Trying fallback model: {model_name}")
|
108 |
-
|
109 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
110 |
-
model = AutoModelForCausalLM.from_pretrained(
|
111 |
-
model_name,
|
112 |
-
torch_dtype=torch.float16,
|
113 |
-
device_map="auto"
|
114 |
-
)
|
115 |
-
|
116 |
-
pipe = pipeline(
|
117 |
-
"text-generation",
|
118 |
-
model=model,
|
119 |
-
tokenizer=tokenizer,
|
120 |
-
max_new_tokens=512,
|
121 |
-
temperature=0.7,
|
122 |
-
top_p=0.95
|
123 |
-
)
|
124 |
-
|
125 |
-
return HuggingFacePipeline(pipeline=pipe)
|
126 |
-
except Exception as fallback_error:
|
127 |
-
print(f"Fallback model also failed: {fallback_error}")
|
128 |
-
raise
|
129 |
-
|
130 |
-
print("Starting model initialization...")
|
131 |
-
llm = initialize_model()
|
132 |
-
print("Model initialization complete!")
|
133 |
-
|
134 |
-
@contextmanager
|
135 |
-
def get_db_connection():
|
136 |
-
conn = sqlite3.connect(DATABASE_PATH)
|
137 |
-
conn.row_factory = sqlite3.Row
|
138 |
-
try:
|
139 |
-
yield conn
|
140 |
-
finally:
|
141 |
-
conn.close()
|
142 |
-
|
143 |
|
|
|
144 |
def init_db():
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
# Initialize
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
|
181 |
class ChatSession:
|
|
|
2 |
import subprocess
|
3 |
import tempfile
|
4 |
import os
|
5 |
+
import shutil
|
6 |
from langchain_community.llms import HuggingFacePipeline
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from langchain.chains import LLMChain
|
|
|
16 |
from werkzeug.utils import secure_filename
|
17 |
import torch
|
18 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
22 |
# Configuration for Hugging Face Spaces
|
23 |
PORT = int(os.environ.get("PORT", 7860))
|
24 |
|
25 |
+
# Create and set up a writable directory in /tmp
|
26 |
+
CACHE_DIR = "/tmp/huggingface_cache"
|
27 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
28 |
+
os.environ['TRANSFORMERS_CACHE'] = CACHE_DIR
|
29 |
+
os.environ['HF_HOME'] = CACHE_DIR
|
30 |
+
os.environ['XDG_CACHE_HOME'] = CACHE_DIR
|
31 |
+
|
32 |
+
# Configure upload folder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
UPLOAD_FOLDER = '/tmp/uploads'
|
34 |
ALLOWED_EXTENSIONS = {'py'}
|
35 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
36 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
37 |
|
38 |
# Database configuration
|
39 |
DATABASE_PATH = '/tmp/chat_database.db'
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def initialize_model():
|
42 |
"""Initialize the model with appropriate settings"""
|
43 |
try:
|
44 |
+
# Use a smaller model that's more likely to work in the Space
|
45 |
+
model_name = "facebook/opt-350m"
|
46 |
print(f"Initializing model: {model_name}")
|
47 |
|
48 |
+
# Initialize tokenizer
|
49 |
tokenizer = AutoTokenizer.from_pretrained(
|
50 |
model_name,
|
51 |
+
cache_dir=CACHE_DIR,
|
52 |
+
local_files_only=False
|
53 |
)
|
54 |
|
55 |
+
# Initialize model with minimal settings
|
56 |
model = AutoModelForCausalLM.from_pretrained(
|
57 |
model_name,
|
58 |
+
cache_dir=CACHE_DIR,
|
59 |
+
local_files_only=False,
|
60 |
torch_dtype=torch.float16,
|
61 |
+
low_cpu_mem_usage=True
|
|
|
62 |
)
|
63 |
|
64 |
+
# Create pipeline
|
65 |
pipe = pipeline(
|
66 |
"text-generation",
|
67 |
model=model,
|
68 |
tokenizer=tokenizer,
|
69 |
+
max_new_tokens=256,
|
|
|
70 |
temperature=0.7,
|
71 |
top_p=0.95,
|
72 |
repetition_penalty=1.15,
|
73 |
+
device_map="auto"
|
74 |
)
|
75 |
|
76 |
return HuggingFacePipeline(pipeline=pipe)
|
77 |
except Exception as e:
|
78 |
print(f"Error initializing model: {e}")
|
79 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# Initialize database
|
82 |
def init_db():
|
83 |
+
"""Initialize the database"""
|
84 |
+
try:
|
85 |
+
with get_db_connection() as conn:
|
86 |
+
conn.execute('''
|
87 |
+
CREATE TABLE IF NOT EXISTS chats (
|
88 |
+
id TEXT PRIMARY KEY,
|
89 |
+
title TEXT,
|
90 |
+
date TEXT,
|
91 |
+
last_message TEXT
|
92 |
+
)
|
93 |
+
''')
|
94 |
+
|
95 |
+
conn.execute('''
|
96 |
+
CREATE TABLE IF NOT EXISTS messages (
|
97 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
98 |
+
chat_id TEXT,
|
99 |
+
role TEXT,
|
100 |
+
content TEXT,
|
101 |
+
timestamp TEXT,
|
102 |
+
FOREIGN KEY (chat_id) REFERENCES chats (id)
|
103 |
+
)
|
104 |
+
''')
|
105 |
+
|
106 |
+
conn.execute('''
|
107 |
+
CREATE TABLE IF NOT EXISTS important_info (
|
108 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
109 |
+
chat_id TEXT,
|
110 |
+
content TEXT,
|
111 |
+
FOREIGN KEY (chat_id) REFERENCES chats (id)
|
112 |
+
)
|
113 |
+
''')
|
114 |
+
conn.commit()
|
115 |
+
except Exception as e:
|
116 |
+
print(f"Error initializing database: {e}")
|
117 |
+
raise
|
118 |
|
119 |
+
# Initialize the application
|
120 |
+
try:
|
121 |
+
print("Initializing database...")
|
122 |
+
init_db()
|
123 |
+
print("Database initialized successfully")
|
124 |
+
|
125 |
+
print("Starting model initialization...")
|
126 |
+
llm = initialize_model()
|
127 |
+
print("Model initialized successfully")
|
128 |
+
except Exception as e:
|
129 |
+
print(f"Initialization error: {e}")
|
130 |
+
raise
|
131 |
|
132 |
|
133 |
class ChatSession:
|