Update app.py
Browse files
app.py
CHANGED
@@ -12,21 +12,47 @@ from typing import Dict, List
|
|
12 |
import sqlite3
|
13 |
from contextlib import contextmanager
|
14 |
import re
|
15 |
-
import os
|
16 |
from werkzeug.utils import secure_filename
|
17 |
|
18 |
app = Flask(__name__)
|
19 |
|
20 |
-
|
|
|
|
|
21 |
ALLOWED_EXTENSIONS = {'py'}
|
22 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
23 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
24 |
# Database configuration
|
25 |
-
DATABASE_PATH = 'chat_database.db'
|
26 |
|
27 |
# Initialize LangChain with Ollama LLM
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
30 |
|
31 |
@contextmanager
|
32 |
def get_db_connection():
|
@@ -606,4 +632,5 @@ def home():
|
|
606 |
|
607 |
|
608 |
if __name__ == "__main__":
|
609 |
-
|
|
|
|
12 |
import sqlite3
|
13 |
from contextlib import contextmanager
|
14 |
import re
|
|
|
15 |
from werkzeug.utils import secure_filename
|
16 |
|
17 |
app = Flask(__name__)
|
18 |
|
19 |
+
PORT = int(os.environ.get("PORT", 7860))
|
20 |
+
|
21 |
+
UPLOAD_FOLDER = '/tmp/uploads' # Change to tmp directory for Spaces
|
22 |
ALLOWED_EXTENSIONS = {'py'}
|
23 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
24 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
25 |
# Database configuration
|
26 |
+
DATABASE_PATH = '/tmp/chat_database.db'
|
27 |
|
28 |
# Initialize LangChain with Ollama LLM
|
29 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
30 |
+
import torch
|
31 |
+
|
32 |
+
# Load model and tokenizer
|
33 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
36 |
+
|
37 |
+
class HuggingFaceLLM:
|
38 |
+
def __init__(self, model, tokenizer):
|
39 |
+
self.model = model
|
40 |
+
self.tokenizer = tokenizer
|
41 |
+
|
42 |
+
def predict(self, prompt):
|
43 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=2048, truncation=True)
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = self.model.generate(
|
46 |
+
inputs["input_ids"],
|
47 |
+
max_length=2048,
|
48 |
+
num_return_sequences=1,
|
49 |
+
temperature=0.7,
|
50 |
+
pad_token_id=self.tokenizer.eos_token_id
|
51 |
+
)
|
52 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
+
return response
|
54 |
|
55 |
+
llm = HuggingFaceLLM(model, tokenizer)
|
56 |
|
57 |
@contextmanager
|
58 |
def get_db_connection():
|
|
|
632 |
|
633 |
|
634 |
if __name__ == "__main__":
|
635 |
+
init_db()
|
636 |
+
app.run(host="0.0.0.0", port=PORT)
|