Update app.py
Browse files
app.py
CHANGED
@@ -15,11 +15,16 @@ import re
|
|
15 |
from werkzeug.utils import secure_filename
|
16 |
import torch
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
18 |
|
19 |
app = Flask(__name__)
|
20 |
|
21 |
PORT = int(os.environ.get("PORT", 7860))
|
22 |
|
|
|
|
|
|
|
|
|
23 |
UPLOAD_FOLDER = '/tmp/uploads' # Change to tmp directory for Spaces
|
24 |
ALLOWED_EXTENSIONS = {'py'}
|
25 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
@@ -28,33 +33,38 @@ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
|
28 |
DATABASE_PATH = '/tmp/chat_database.db'
|
29 |
|
30 |
# Initialize LangChain with Ollama LLM
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
model_name = "
|
36 |
-
|
37 |
-
|
38 |
-
model_name
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
pipe = pipeline(
|
46 |
-
"text-generation",
|
47 |
-
model=model,
|
48 |
-
tokenizer=tokenizer,
|
49 |
-
max_new_tokens=512,
|
50 |
-
temperature=0.7,
|
51 |
-
top_p=0.95,
|
52 |
-
repetition_penalty=1.15
|
53 |
-
)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
56 |
|
57 |
-
|
|
|
|
|
58 |
|
59 |
@contextmanager
|
60 |
def get_db_connection():
|
|
|
15 |
from werkzeug.utils import secure_filename
|
16 |
import torch
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
18 |
+
from huggingface_hub import login
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
22 |
PORT = int(os.environ.get("PORT", 7860))
|
23 |
|
24 |
+
hf_token = os.environ.get("HF_TOKEN")
|
25 |
+
if hf_token:
|
26 |
+
login(HF_TOKEN)
|
27 |
+
|
28 |
UPLOAD_FOLDER = '/tmp/uploads' # Change to tmp directory for Spaces
|
29 |
ALLOWED_EXTENSIONS = {'py'}
|
30 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
33 |
DATABASE_PATH = '/tmp/chat_database.db'
|
34 |
|
35 |
# Initialize LangChain with Ollama LLM
|
36 |
+
if hf_token:
|
37 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
38 |
+
else:
|
39 |
+
# Fallback to a free, smaller model
|
40 |
+
model_name = "microsoft/phi-4"
|
41 |
+
|
42 |
+
try:
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_name,
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
device_map="auto",
|
48 |
+
load_in_8bit=True
|
49 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Create pipeline
|
52 |
+
pipe = pipeline(
|
53 |
+
"text-generation",
|
54 |
+
model=model,
|
55 |
+
tokenizer=tokenizer,
|
56 |
+
max_new_tokens=512,
|
57 |
+
temperature=0.7,
|
58 |
+
top_p=0.95,
|
59 |
+
repetition_penalty=1.15
|
60 |
+
)
|
61 |
|
62 |
+
# Initialize LangChain with HuggingFacePipeline
|
63 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
64 |
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error loading model: {e}")
|
67 |
+
raise
|
68 |
|
69 |
@contextmanager
|
70 |
def get_db_connection():
|