Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,37 +12,35 @@ from flask_cors import CORS
|
|
12 |
# Suppress sklearn warnings
|
13 |
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')
|
14 |
|
15 |
-
#
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
-
#
|
19 |
DIABETES_MODEL_URL = os.getenv("DIABETES_MODEL_URL")
|
20 |
SCALER_URL = os.getenv("SCALER_URL")
|
21 |
MULTI_MODEL_URL = os.getenv("MULTI_MODEL_URL")
|
22 |
|
23 |
-
#
|
24 |
MODEL_PATHS = {
|
25 |
"DIABETES_MODEL": "finaliseddiabetes_model.zip",
|
26 |
"SCALER": "finalisedscaler.zip",
|
27 |
"MULTI_MODEL": "nodiabetes.zip",
|
28 |
}
|
29 |
|
30 |
-
# Extracted
|
31 |
EXTRACTED_MODELS = {
|
32 |
"DIABETES_MODEL": "finaliseddiabetes_model.joblib",
|
33 |
"SCALER": "finalisedscaler.joblib",
|
34 |
"MULTI_MODEL": "nodiabetes.joblib",
|
35 |
}
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
# Flask app
|
40 |
app = Flask(__name__)
|
41 |
-
|
42 |
-
# Enable CORS for all origins
|
43 |
CORS(app, supports_credentials=True)
|
44 |
|
45 |
-
# Root route
|
46 |
@app.route('/')
|
47 |
def index():
|
48 |
return """
|
@@ -52,7 +50,7 @@ def index():
|
|
52 |
"""
|
53 |
|
54 |
def download_model(url, zip_filename):
|
55 |
-
zip_path = os.path.join(
|
56 |
if not url:
|
57 |
logging.error(f"URL for {zip_filename} is missing!")
|
58 |
return False
|
@@ -71,8 +69,8 @@ def download_model(url, zip_filename):
|
|
71 |
return False
|
72 |
|
73 |
def extract_if_needed(zip_filename, extracted_filename):
|
74 |
-
zip_path = os.path.join(
|
75 |
-
extracted_path = os.path.join(
|
76 |
if os.path.exists(extracted_path):
|
77 |
logging.info(f"{extracted_filename} already exists. Skipping extraction.")
|
78 |
return True
|
@@ -81,15 +79,15 @@ def extract_if_needed(zip_filename, extracted_filename):
|
|
81 |
return False
|
82 |
try:
|
83 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
84 |
-
zip_ref.extractall(
|
85 |
-
logging.info(f"Extracted {zip_filename}")
|
86 |
return True
|
87 |
except Exception as e:
|
88 |
logging.error(f"Error extracting {zip_filename}: {e}")
|
89 |
return False
|
90 |
|
91 |
def load_model(model_filename):
|
92 |
-
model_path = os.path.join(
|
93 |
if not os.path.exists(model_path):
|
94 |
logging.error(f"Model file not found: {model_path}")
|
95 |
return None
|
@@ -105,7 +103,8 @@ def initialize_models():
|
|
105 |
models = {}
|
106 |
for model_key, zip_filename in MODEL_PATHS.items():
|
107 |
extracted_filename = EXTRACTED_MODELS[model_key]
|
108 |
-
|
|
|
109 |
download_model(globals()[f"{model_key}_URL"], zip_filename)
|
110 |
extract_if_needed(zip_filename, extracted_filename)
|
111 |
models[model_key] = load_model(extracted_filename)
|
|
|
12 |
# Suppress sklearn warnings
|
13 |
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')
|
14 |
|
15 |
+
# Logging setup
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
+
# Model URLs from env
|
19 |
DIABETES_MODEL_URL = os.getenv("DIABETES_MODEL_URL")
|
20 |
SCALER_URL = os.getenv("SCALER_URL")
|
21 |
MULTI_MODEL_URL = os.getenv("MULTI_MODEL_URL")
|
22 |
|
23 |
+
# Model ZIP names
|
24 |
MODEL_PATHS = {
|
25 |
"DIABETES_MODEL": "finaliseddiabetes_model.zip",
|
26 |
"SCALER": "finalisedscaler.zip",
|
27 |
"MULTI_MODEL": "nodiabetes.zip",
|
28 |
}
|
29 |
|
30 |
+
# Extracted joblib names
|
31 |
EXTRACTED_MODELS = {
|
32 |
"DIABETES_MODEL": "finaliseddiabetes_model.joblib",
|
33 |
"SCALER": "finalisedscaler.joblib",
|
34 |
"MULTI_MODEL": "nodiabetes.joblib",
|
35 |
}
|
36 |
|
37 |
+
# Use writeable temp dir
|
38 |
+
TMP_DIR = "/tmp"
|
39 |
|
40 |
+
# Flask app init
|
41 |
app = Flask(__name__)
|
|
|
|
|
42 |
CORS(app, supports_credentials=True)
|
43 |
|
|
|
44 |
@app.route('/')
|
45 |
def index():
|
46 |
return """
|
|
|
50 |
"""
|
51 |
|
52 |
def download_model(url, zip_filename):
|
53 |
+
zip_path = os.path.join(TMP_DIR, zip_filename)
|
54 |
if not url:
|
55 |
logging.error(f"URL for {zip_filename} is missing!")
|
56 |
return False
|
|
|
69 |
return False
|
70 |
|
71 |
def extract_if_needed(zip_filename, extracted_filename):
|
72 |
+
zip_path = os.path.join(TMP_DIR, zip_filename)
|
73 |
+
extracted_path = os.path.join(TMP_DIR, extracted_filename)
|
74 |
if os.path.exists(extracted_path):
|
75 |
logging.info(f"{extracted_filename} already exists. Skipping extraction.")
|
76 |
return True
|
|
|
79 |
return False
|
80 |
try:
|
81 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
82 |
+
zip_ref.extractall(TMP_DIR)
|
83 |
+
logging.info(f"Extracted {zip_filename} to {TMP_DIR}")
|
84 |
return True
|
85 |
except Exception as e:
|
86 |
logging.error(f"Error extracting {zip_filename}: {e}")
|
87 |
return False
|
88 |
|
89 |
def load_model(model_filename):
|
90 |
+
model_path = os.path.join(TMP_DIR, model_filename)
|
91 |
if not os.path.exists(model_path):
|
92 |
logging.error(f"Model file not found: {model_path}")
|
93 |
return None
|
|
|
103 |
models = {}
|
104 |
for model_key, zip_filename in MODEL_PATHS.items():
|
105 |
extracted_filename = EXTRACTED_MODELS[model_key]
|
106 |
+
zip_path = os.path.join(TMP_DIR, zip_filename)
|
107 |
+
if not os.path.exists(zip_path):
|
108 |
download_model(globals()[f"{model_key}_URL"], zip_filename)
|
109 |
extract_if_needed(zip_filename, extracted_filename)
|
110 |
models[model_key] = load_model(extracted_filename)
|