import torch import numpy as np from botorch.test_functions.synthetic import Rosenbrock device = torch.device("cpu") dtype = torch.double def Rosenbrock3DEmbedd(X_input): # assert torch.is_tensor(X) and X.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." # Set function here: X = X_input[:,[1,2,3]] n = X.size(0) dimm = 3 fun = Rosenbrock(dim=dimm, negate=True) fun.bounds[0, :].fill_(-2.0) fun.bounds[1, :].fill_(2.0) dim = fun.dim lb, ub = fun.bounds fx = fun(X) fx = fx.reshape((n, 1)) gx = 0 return gx, fx def Rosenbrock3DEmbedd_Scaling(X): X_scaled = X.clone() X_scaled[:,1] = X_scaled[:,1]*4 - 2 X_scaled[:,2] = X_scaled[:,2]*4 - 2 X_scaled[:,3] = X_scaled[:,3]*4 - 2 return X_scaled