Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
# | |
# | |
# WeldedBeam: 4D objective, 5 constraints | |
# | |
# Reference: | |
# Gandomi AH, Yang XS, Alavi AH (2011) Mixed | |
# variable structural optimization using firefly | |
# algorithm. Computers & Structures 89(23- | |
# 24):2325–2336 | |
# | |
# | |
def WeldedBeam(individuals): | |
assert torch.is_tensor(individuals) and individuals.size(1) == 4, "Input must be an n-by-4 PyTorch tensor." | |
C1 = 1.10471 | |
C2 = 0.04811 | |
C3 = 14.0 | |
fx = torch.zeros(individuals.shape[0], 1) | |
gx1 = torch.zeros(individuals.shape[0], 1) | |
gx2 = torch.zeros(individuals.shape[0], 1) | |
gx3 = torch.zeros(individuals.shape[0], 1) | |
gx4 = torch.zeros(individuals.shape[0], 1) | |
gx5 = torch.zeros(individuals.shape[0], 1) | |
for i in range(individuals.shape[0]): | |
x = individuals[i,:] | |
h = x[0] | |
l = x[1] | |
t = x[2] | |
b = x[3] | |
test_function = - ( C1*h*h*l + C2*t*b*(C3+l) ) | |
fx[i] = test_function | |
## Calculate constraints terms | |
tao_dx = 6000 / (np.sqrt(2)*h*l) | |
tao_dxx = 6000*(14+0.5*l)*np.sqrt( 0.25*(l**2 + (h+t)**2 ) ) / (2* (0.707*h*l * ( l**2 /12 + 0.25*(h+t)**2 ) ) ) | |
tao = np.sqrt( tao_dx**2 + tao_dxx**2 + l*tao_dx*tao_dxx / np.sqrt(0.25*(l**2 + (h+t)**2)) ) | |
sigma = 504000/ (t**2 * b) | |
P_c = 64746*(1-0.0282346*t)* t * b**3 | |
delta = 2.1952/ (t**3 *b) | |
## Calculate 5 constraints | |
g1 = (-1) * (13600- tao) | |
g2 = (-1) * (30000 - sigma) | |
g3 = (-1) * (b - h) | |
g4 = (-1) * (P_c - 6000) | |
g5 = (-1) * (0.25 - delta) | |
gx1[i] = g1 | |
gx2[i] = g2 | |
gx3[i] = g3 | |
gx4[i] = g4 | |
gx5[i] = g5 | |
gx = torch.cat((gx1, gx2, gx3, gx4, gx5), 1) | |
return gx, fx | |
def WeldedBeam_Scaling(X): | |
assert torch.is_tensor(X) and X.size(1) == 4, "Input must be an n-by-4 PyTorch tensor." | |
h = (X[:,0] * (10-0.125) + 0.125 ).reshape(X.shape[0],1) | |
l = (X[:,1] * (15-0.1 ) + 0.1 ).reshape(X.shape[0],1) | |
t = (X[:,2] * (10-0.1 ) + 0.1 ).reshape(X.shape[0],1) | |
b = (X[:,3] * (10-0.1 ) + 0.1 ).reshape(X.shape[0],1) | |
X_scaled = torch.cat((h, l, t, b), dim=1) | |
return X_scaled | |