File size: 7,537 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import subprocess
import stat
import pandas as pd
import torch
import numpy as np



def Mazda(init_samples):
    ##########################################
    # Scaling
    ##########################################
    
    # Define the path to your Excel file
    file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/Info_Mazda_CdMOBP_edited.xlsx'
    
    # Read the Excel file into a DataFrame
    dataframe = pd.read_excel(file_path, sheet_name='Explain_DV_and_Const.')
    
    # Display the DataFrame to ensure it has been read correctly
    bounds = dataframe.values[1:, 1:3]
    bounds_tensor = torch.tensor(bounds, dtype=torch.float32)
    # print(bounds_tensor.shape)
    
    range_bounds = bounds_tensor[:,1] - bounds_tensor[:,0]
    
    scaled_samples = init_samples * range_bounds + bounds_tensor[:,0]
    # print(scaled_samples)
    
    # Convert the torch tensor to a numpy array
    data_numpy_back = scaled_samples.numpy()
    
    # Create a pandas DataFrame from the numpy array
    dataframe_back = pd.DataFrame(data_numpy_back)
    
    # Write the DataFrame to a text file with space-separated values
    output_file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2/pop_vars_eval.txt'
    
    dataframe_back.to_csv(output_file_path, sep='\t', header=False, index=False)
    #####################
    #####################
    
    
    #####################
    # Run Bash file
    #####################
    
    # Change the current working directory
    os.chdir('/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2')
    
    # Get the current permissions of the file
    current_permissions = os.stat(os.getcwd()).st_mode
    
    # Add execute permissions for the owner, group, and others
    new_permissions = current_permissions | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH
    
    # Apply the new permissions
    os.chmod(os.getcwd(), new_permissions)
    
    # Script name
    script_name = 'run.sh'
    
    # Run the bash script in the background
    process = subprocess.Popen(['bash', script_name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, start_new_session=True)
    process.wait()
    
    # Optional: capture the output and error messages
    stdout, stderr = process.communicate()
    
    os.chdir('/home/turbo/rosenyu/Bank_High_DIM/')
    # print(os.getcwd())
    #####################
    #####################
    
    
    #####################
    # Read in objective and constraints
    #####################
    
    # Read the data from the file into a pandas DataFrame
    file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2/pop_objs_eval.txt'
    objs_dataframe = pd.read_csv(file_path, delim_whitespace=True, header=None)
    
    # Convert the DataFrame to a numpy array
    objs_data_numpy = objs_dataframe.values
    
    # Convert the numpy array to a torch tensor
    objs_data_tensor = torch.tensor(objs_data_numpy, dtype=torch.float32)
    objs_data_tensor = objs_data_tensor[:,0].reshape(objs_data_tensor.shape[0],1)
    
    
    
    # Read the data from the file into a pandas DataFrame
    file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2/pop_cons_eval.txt'
    cons_dataframe = pd.read_csv(file_path, delim_whitespace=True, header=None)
    
    # Convert the DataFrame to a numpy array
    cons_data_numpy = cons_dataframe.values
    
    # Convert the numpy array to a torch tensor
    cons_data_tensor = torch.tensor(cons_data_numpy, dtype=torch.float32)
    
    
    # print(objs_data_tensor)
    # print(cons_data_tensor)
    return cons_data_tensor, -objs_data_tensor







def Mazda_softpen(init_samples):
    ##########################################
    # Scaling
    ##########################################
    
    # Define the path to your Excel file
    file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/Info_Mazda_CdMOBP_edited.xlsx'
    
    # Read the Excel file into a DataFrame
    dataframe = pd.read_excel(file_path, sheet_name='Explain_DV_and_Const.')
    
    # Display the DataFrame to ensure it has been read correctly
    bounds = dataframe.values[1:, 1:3]
    bounds_tensor = torch.tensor(bounds, dtype=torch.float32)
    # print(bounds_tensor.shape)
    
    range_bounds = bounds_tensor[:,1] - bounds_tensor[:,0]
    
    scaled_samples = init_samples * range_bounds + bounds_tensor[:,0]
    # print(scaled_samples)
    
    # Convert the torch tensor to a numpy array
    data_numpy_back = scaled_samples.numpy()
    
    # Create a pandas DataFrame from the numpy array
    dataframe_back = pd.DataFrame(data_numpy_back)
    
    # Write the DataFrame to a text file with space-separated values
    output_file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2/pop_vars_eval.txt'
    
    dataframe_back.to_csv(output_file_path, sep='\t', header=False, index=False)
    #####################
    #####################
    
    
    #####################
    # Run Bash file
    #####################
    
    # Change the current working directory
    os.chdir('/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2')
    
    # Get the current permissions of the file
    current_permissions = os.stat(os.getcwd()).st_mode
    
    # Add execute permissions for the owner, group, and others
    new_permissions = current_permissions | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH
    
    # Apply the new permissions
    os.chmod(os.getcwd(), new_permissions)
    
    # Script name
    script_name = 'run.sh'
    
    # Run the bash script in the background
    process = subprocess.Popen(['bash', script_name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, start_new_session=True)
    process.wait()
    
    # Optional: capture the output and error messages
    stdout, stderr = process.communicate()
    
    os.chdir('/home/turbo/rosenyu/Bank_High_DIM/')
    # print(os.getcwd())
    #####################
    #####################
    
    
    #####################
    # Read in objective and constraints
    #####################
    
    # Read the data from the file into a pandas DataFrame
    file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2/pop_objs_eval.txt'
    objs_dataframe = pd.read_csv(file_path, delim_whitespace=True, header=None)
    
    # Convert the DataFrame to a numpy array
    objs_data_numpy = objs_dataframe.values
    
    # Convert the numpy array to a torch tensor
    objs_data_tensor = torch.tensor(objs_data_numpy, dtype=torch.float32)
    objs_data_tensor = objs_data_tensor[:,0].reshape(objs_data_tensor.shape[0],1)
    
    
    
    # Read the data from the file into a pandas DataFrame
    file_path = '/home/turbo/rosenyu/Bank_High_DIM/Mazda_CdMOBP/Mazda_CdMOBP/rosen_sample_t2/pop_cons_eval.txt'
    cons_dataframe = pd.read_csv(file_path, delim_whitespace=True, header=None)
    
    # Convert the DataFrame to a numpy array
    cons_data_numpy = cons_dataframe.values
    
    # Convert the numpy array to a torch tensor
    cons_data_tensor = torch.tensor(cons_data_numpy, dtype=torch.float32)


    
    cost = cons_data_tensor
    cost[cost<0] = 0
    cost = cost.sum(dim=1).reshape(cost.shape[0], 1)
    objs_data_tensor = objs_data_tensor + cost

    
    # print(objs_data_tensor)
    # print(cons_data_tensor)
    return cons_data_tensor, -objs_data_tensor