File size: 2,161 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import numpy as np

#
#
#   PressureVessel: 4D objective, 4 constraints
#
#   Reference:
#     Gandomi AH, Yang XS, Alavi AH (2011) Mixed
#     variable structural optimization using firefly
#     algorithm. Computers & Structures 89(23-
#     24):2325–2336
#
#


def PressureVessel(individuals):

    assert torch.is_tensor(individuals) and individuals.size(1) == 4, "Input must be an n-by-4 PyTorch tensor."
    
    C1 = 0.6224
    C2 = 1.7781
    C3 = 3.1661
    C4 = 19.84
    fx = []
    gx1 = []
    gx2 = []
    gx3 = []
    gx4 = []
    

    n = individuals.size(0)
    

    for i in range(n):
        
        x = individuals[i,:]
        # print(x)
        
        Ts = x[0]
        Th = x[1]
        R = x[2]
        L = x[3]
        
        
        ## Negative sign to make it a maximization problem
        test_function = - ( C1*Ts*R*L + C2*Th*R*R + C3*Ts*Ts*L + C4*Ts*Ts*R )
        fx.append(test_function) 
        

        g1 = -Ts + 0.0193*R
        g2 = -Th + 0.00954*R
        g3 = (-1)*np.pi*R*R*L + (-1)*4/3*np.pi*R*R*R + 750*1728
        g4 = L-240
        
        

        gx1.append( g1 )       
        gx2.append( g2 )    
        gx3.append( g3 )            
        gx4.append( g4 )
       
    fx = torch.tensor(fx)
    fx = torch.reshape(fx, (len(fx),1))

    gx1 = torch.tensor(gx1)  
    gx1 = gx1.reshape((n, 1))

    gx2 = torch.tensor(gx2)  
    gx2 = gx2.reshape((n, 1))
    
    gx3 = torch.tensor(gx3)  
    gx3 = gx3.reshape((n, 1))
    
    gx4 = torch.tensor(gx4)  
    gx4 = gx4.reshape((n, 1))
    
    gx = torch.cat((gx1, gx2, gx3, gx4), 1)

    
    return gx, fx






def PressureVessel_Scaling(X):

    assert torch.is_tensor(X) and X.size(1) == 4, "Input must be an n-by-4 PyTorch tensor."
    
    Ts  = (X[:,0] * (98*0.0625) + 0.0625).reshape(X.shape[0],1)
    Th  = (X[:,1] * (98*0.0625) + 0.0625).reshape(X.shape[0],1)
    R   = (X[:,2] * (200-10) + 10).reshape(X.shape[0],1)
    L   = (X[:,3] * (200-10) ).reshape(X.shape[0],1)
    
    
    X_scaled = torch.cat((Ts, Th, R, L), dim=1)
    
    return X_scaled