Spaces:
Sleeping
Sleeping
File size: 6,690 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import torch
import numpy as np
#
#
# Car: 11D objective, 10 constraints
#
# Reference:
# Gandomi AH, Yang XS, Alavi AH (2011) Mixed
# variable structural optimization using firefly
# algorithm. Computers & Structures 89(23-
# 24):2325–2336
#
#
def Car(individuals):
assert torch.is_tensor(individuals) and individuals.size(1) == 11, "Input must be an n-by-11 PyTorch tensor."
n = individuals.size(0)
fx = torch.zeros((n,1))
gx1 = torch.zeros((n,1))
gx2 = torch.zeros((n,1))
gx3 = torch.zeros((n,1))
gx4 = torch.zeros((n,1))
gx5 = torch.zeros((n,1))
gx6 = torch.zeros((n,1))
gx7 = torch.zeros((n,1))
gx8 = torch.zeros((n,1))
gx9 = torch.zeros((n,1))
gx10 = torch.zeros((n,1))
gx11 = torch.zeros((n,1))
n = individuals.size(0)
# Set function and constraints here:
for i in range(n):
x = individuals[i,:]
x1 = x[0]
x2 = x[1]
x3 = x[2]
x4 = x[3]
x5 = x[4]
x6 = x[5]
x7 = x[6]
x8 = x[7]
x9 = x[8]
x10 = x[9]
x11 = x[10]
## Negative sign to make it a maximization problem
test_function = - ( 1.98 + 4.90*x1 + 6.67*x2 + 6.98*x3 + 4.01*x4 + 1.78*x5 + 2.73*x7 )
## Calculate constraints terms
g1 = 1.16 - 0.3717*x2*x4 - 0.00931*x2*x10 - 0.484*x3*x9 + 0.01343*x6*x10 -1
g2 = (0.261 - 0.0159*x1*x2 - 0.188*x1*x8
- 0.019*x2*x7 + 0.0144*x3*x5 + 0.0008757*x5*x10
+ 0.08045*x6*x9 + 0.00139*x8*x11 + 0.00001575*x10*x11) -0.9
g3 = (0.214 + 0.00817*x5 - 0.131*x1*x8 - 0.0704*x1*x9 + 0.03099*x2*x6
-0.018*x2*x7 + 0.0208*x3*x8 + 0.121*x3*x9 - 0.00364*x5*x6
+0.0007715*x5*x10 - 0.0005354*x6*x10 + 0.00121*x8*x11) -0.9
g4 = 0.74 -0.061*x2 -0.163*x3*x8 +0.001232*x3*x10 -0.166*x7*x9 +0.227*x2*x2 -0.9
g5 = 28.98 +3.818*x3-4.2*x1*x2+0.0207*x5*x10+6.63*x6*x9-7.7*x7*x8+0.32*x9*x10 -32
g6 = 33.86 +2.95*x3+0.1792*x10-5.057*x1*x2-11.0*x2*x8-0.0215*x5*x10-9.98*x7*x8+22.0*x8*x9 -32
g7 = 46.36 -9.9*x2-12.9*x1*x8+0.1107*x3*x10 -32
g8 = 4.72 -0.5*x4-0.19*x2*x3-0.0122*x4*x10+0.009325*x6*x10+0.000191*x11**2 -4
g9 = 10.58 -0.674*x1*x2-1.95*x2*x8+0.02054*x3*x10-0.0198*x4*x10+0.028*x6*x10 -9.9
g10 = 16.45 -0.489*x3*x7-0.843*x5*x6+0.0432*x9*x10-0.0556*x9*x11-0.000786*x11**2 -15.7
gx1[i] = g1
gx2[i] = g2
gx3[i] = g3
gx4[i] = g4
gx5[i] = g5
gx6[i] = g6
gx7[i] = g7
gx8[i] = g8
gx9[i] = g9
gx10[i] = g10
fx[i] = test_function
gx = torch.cat((gx1, gx2, gx3, gx4, gx5, gx6, gx7, gx8, gx9, gx10), 1)
return gx, fx
def Car_Scaling(X):
assert torch.is_tensor(X) and X.size(1) == 11, "Input must be an n-by-11 PyTorch tensor."
x1 = (X[:,0] * (1.5-0.5) + 0.5).reshape(X.shape[0],1)
x2 = (X[:,1] * (1.35-0.45) + 0.45).reshape(X.shape[0],1)
x3 = (X[:,2] * (1.5-0.5) + 0.5).reshape(X.shape[0],1)
x4 = (X[:,3] * (1.5-0.5) + 0.5).reshape(X.shape[0],1)
x5 = (X[:,4] * (1.5-0.5) + 0.5).reshape(X.shape[0],1)
x6 = (X[:,5] * (1.5-0.5) + 0.5).reshape(X.shape[0],1)
x7 = (X[:,6] * (1.5-0.5) + 0.5).reshape(X.shape[0],1)
x8 = (X[:,7] * (0.345-0.192) + 0.192).reshape(X.shape[0],1)
x9 = (X[:,8] * (0.345-0.192) + 0.192).reshape(X.shape[0],1)
x10 = (X[:,9] * (-20)).reshape(X.shape[0],1)
x11 = (X[:,10] * (-20)).reshape(X.shape[0],1)
X_scaled = torch.cat((x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11), dim=1)
return X_scaled
def Car_softpen(individuals):
assert torch.is_tensor(individuals) and individuals.size(1) == 11, "Input must be an n-by-11 PyTorch tensor."
n = individuals.size(0)
fx = torch.zeros((n,1))
gx1 = torch.zeros((n,1))
gx2 = torch.zeros((n,1))
gx3 = torch.zeros((n,1))
gx4 = torch.zeros((n,1))
gx5 = torch.zeros((n,1))
gx6 = torch.zeros((n,1))
gx7 = torch.zeros((n,1))
gx8 = torch.zeros((n,1))
gx9 = torch.zeros((n,1))
gx10 = torch.zeros((n,1))
gx11 = torch.zeros((n,1))
n = individuals.size(0)
# Set function and constraints here:
for i in range(n):
x = individuals[i,:]
x1 = x[0]
x2 = x[1]
x3 = x[2]
x4 = x[3]
x5 = x[4]
x6 = x[5]
x7 = x[6]
x8 = x[7]
x9 = x[8]
x10 = x[9]
x11 = x[10]
## Negative sign to make it a maximization problem
test_function = - ( 1.98 + 4.90*x1 + 6.67*x2 + 6.98*x3 + 4.01*x4 + 1.78*x5 + 2.73*x7 )
## Calculate constraints terms
g1 = 1.16 - 0.3717*x2*x4 - 0.00931*x2*x10 - 0.484*x3*x9 + 0.01343*x6*x10 -1
g2 = (0.261 - 0.0159*x1*x2 - 0.188*x1*x8
- 0.019*x2*x7 + 0.0144*x3*x5 + 0.0008757*x5*x10
+ 0.08045*x6*x9 + 0.00139*x8*x11 + 0.00001575*x10*x11) -0.9
g3 = (0.214 + 0.00817*x5 - 0.131*x1*x8 - 0.0704*x1*x9 + 0.03099*x2*x6
-0.018*x2*x7 + 0.0208*x3*x8 + 0.121*x3*x9 - 0.00364*x5*x6
+0.0007715*x5*x10 - 0.0005354*x6*x10 + 0.00121*x8*x11) -0.9
g4 = 0.74 -0.061*x2 -0.163*x3*x8 +0.001232*x3*x10 -0.166*x7*x9 +0.227*x2*x2 -0.9
g5 = 28.98 +3.818*x3-4.2*x1*x2+0.0207*x5*x10+6.63*x6*x9-7.7*x7*x8+0.32*x9*x10 -32
g6 = 33.86 +2.95*x3+0.1792*x10-5.057*x1*x2-11.0*x2*x8-0.0215*x5*x10-9.98*x7*x8+22.0*x8*x9 -32
g7 = 46.36 -9.9*x2-12.9*x1*x8+0.1107*x3*x10 -32
g8 = 4.72 -0.5*x4-0.19*x2*x3-0.0122*x4*x10+0.009325*x6*x10+0.000191*x11**2 -4
g9 = 10.58 -0.674*x1*x2-1.95*x2*x8+0.02054*x3*x10-0.0198*x4*x10+0.028*x6*x10 -9.9
g10 = 16.45 -0.489*x3*x7-0.843*x5*x6+0.0432*x9*x10-0.0556*x9*x11-0.000786*x11**2 -15.7
gx1[i] = g1
gx2[i] = g2
gx3[i] = g3
gx4[i] = g4
gx5[i] = g5
gx6[i] = g6
gx7[i] = g7
gx8[i] = g8
gx9[i] = g9
gx10[i] = g10
fx[i] = test_function
gx = torch.cat((gx1, gx2, gx3, gx4, gx5, gx6, gx7, gx8, gx9, gx10), 1)
cost = gx
cost[cost<0] = 0
cost = cost.sum(dim=1).reshape(cost.shape[0], 1)
fx = fx + cost
return gx, fx
|