File size: 5,538 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# %matplotlib inline
import matplotlib.pyplot as plt

import plotly.graph_objects as go
from datasets import *
from models import MLP, SNMLP
from torch.quasirandom import SobolEngine
import time
import sys

def LV_embedding(X, iters):
    X = X.clone()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    X = X.to(device)
    print(device)
    ambient_dim = X.size(-1)

    width = ambient_dim * 16
    # Note in particular the lack of the bottleneck choice below
    encoder = MLP(ambient_dim, ambient_dim, [width] * 4).to(device)
    # Note also the change in the decoder to have spectral normalization
    decoder = SNMLP(ambient_dim, ambient_dim, [width] * 4).to(device)

    opt = torch.optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=1e-4)
    
    畏, 位 = 0.01, 0.03

    START_TIME = time.time()
    for i in range(iters):
        opt.zero_grad()
        z = encoder(X)
        rec_loss = F.mse_loss(decoder(z), X)
        # Note below the least volume loss
        vol_loss = torch.exp(torch.log(z.std(0) + 畏).mean())
        loss = rec_loss + 位 * vol_loss
        loss.backward()
        opt.step()

        if (i+1) % 1000 == 0:
            print('Epoch {}: rec = {}, vol = {}'.format(i, rec_loss, vol_loss))
            END_TIME = time.time()
            INTERVAL = END_TIME-START_TIME
            f = open("/home/gridsan/ryu/Bank_High_DIM/LVAE_Test_July9/LV_embedding_Adam_July9.txt", "a")
            f.write('Epoch {}: rec = {}, vol = {}, Time: {}'.format(i, rec_loss, vol_loss, INTERVAL))
            f.write('\n')
            f.close()
    
    encoder.eval()
    decoder.eval()

    with torch.no_grad():
        z = encoder(X)
    idx = z.std(0).argsort(descending=True)
    
    return z.to('cpu'), z.std(0).to('cpu'), idx.to('cpu'), encoder.to('cpu'), decoder.to('cpu')


def LV_embedding_AdamW(X, iters):
    X = X.clone()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    X = X.to(device)
    print(device)
    ambient_dim = X.size(-1)

    width = ambient_dim * 16
    # Note in particular the lack of the bottleneck choice below
    encoder = MLP(ambient_dim, ambient_dim, [width] * 4).to(device)
    # Note also the change in the decoder to have spectral normalization
    decoder = SNMLP(ambient_dim, ambient_dim, [width] * 4).to(device)

    opt = torch.optim.AdamW(list(encoder.parameters()) + list(decoder.parameters()), lr=1e-4)
    
    畏, 位 = 0.01, 0.03
    
    START_TIME = time.time()

    for i in range(iters):
        opt.zero_grad()
        z = encoder(X)
        rec_loss = F.mse_loss(decoder(z), X)
        # Note below the least volume loss
        vol_loss = torch.exp(torch.log(z.std(0) + 畏).mean())
        loss = rec_loss + 位 * vol_loss
        loss.backward()
        opt.step()

        if (i+1) % 1000 == 0:
            print('Epoch {}: rec = {}, vol = {}'.format(i, rec_loss, vol_loss))
            END_TIME = time.time()
            INTERVAL = END_TIME-START_TIME
            f = open("/home/gridsan/ryu/Bank_High_DIM/LVAE_Test_July9/LV_embedding_AdamW_July9.txt", "a")
            f.write('Epoch {}: rec = {}, vol = {}, Time: {}'.format(i, rec_loss, vol_loss, INTERVAL))
            f.write('\n')
            f.close()
    
    encoder.eval()
    decoder.eval()

    with torch.no_grad():
        z = encoder(X)
    idx = z.std(0).argsort(descending=True)
    
    return z.to('cpu'), z.std(0).to('cpu'), idx.to('cpu'), encoder.to('cpu'), decoder.to('cpu')    


def LV_embedding_5e4(X, iters):
    X = X.clone()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    X = X.to(device)
    print(device)
    ambient_dim = X.size(-1)

    width = ambient_dim * 16
    # Note in particular the lack of the bottleneck choice below
    encoder = MLP(ambient_dim, ambient_dim, [width] * 4).to(device)
    # Note also the change in the decoder to have spectral normalization
    decoder = SNMLP(ambient_dim, ambient_dim, [width] * 4).to(device)

    opt = torch.optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=5e-4)
    
    畏, 位 = 0.01, 0.03
    
    START_TIME = time.time()

    for i in range(iters):
        opt.zero_grad()
        z = encoder(X)
        rec_loss = F.mse_loss(decoder(z), X)
        # Note below the least volume loss
        vol_loss = torch.exp(torch.log(z.std(0) + 畏).mean())
        loss = rec_loss + 位 * vol_loss
        loss.backward()
        opt.step()

        if (i+1) % 1000 == 0:
            print('Epoch {}: rec = {}, vol = {}'.format(i, rec_loss, vol_loss))
            END_TIME = time.time()
            INTERVAL = END_TIME-START_TIME
            f = open("/home/gridsan/ryu/Bank_High_DIM/LVAE_Test_July9/LV_embedding_5e4_July9.txt", "a")
            f.write('Epoch {}: rec = {}, vol = {}, Time: {}'.format(i, rec_loss, vol_loss, INTERVAL))
            f.write('\n')
            f.close()
    
    encoder.eval()
    decoder.eval()

    with torch.no_grad():
        z = encoder(X)
    idx = z.std(0).argsort(descending=True)
    
    return z.to('cpu'), z.std(0).to('cpu'), idx.to('cpu'), encoder.to('cpu'), decoder.to('cpu')     


def sampling_z(z):
    z_dim = z.shape[1]
    
    sobol = SobolEngine(z_dim, scramble=True)
    Z_samples = sobol.draw(2000)
    
    for ii in range(z_dim):
        Z_samples[:,ii] = Z_samples[:,ii] * (z[:,ii].max() - z[:,ii].min()) + z[:,ii].min()
    
    return Z_samples