File size: 20,523 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
from __future__ import annotations

import random
from collections import OrderedDict
import torch

from .. import utils
from ..priors.hebo_prior import Warp
from gpytorch.priors import LogNormalPrior

# from botorch.optim import module_to_array, set_params_with_array
# from .. import module_to_array, set_params_with_array

import scipy
from scipy.optimize import Bounds
from typing import OrderedDict
import numpy as np
from functools import partial

device = 'cpu'


def fit_lbfgs(x, w, nll, num_grad_steps=10, ignore_prior=True, params0=None):
    bounds_ = {}
    if hasattr(w, "named_parameters_and_constraints"):
        for param_name, _, constraint in w.named_parameters_and_constraints():
            if constraint is not None and not constraint.enforced:
                bounds_[param_name] = constraint.lower_bound, constraint.upper_bound
    params0_, property_dict, bounds_ = module_to_array(
        module=w, bounds=bounds_, exclude=None
    )
    if params0 is None: params0 = params0_
    bounds = Bounds(lb=bounds_[0], ub=bounds_[1], keep_feasible=True)

    def loss_f(params, w):
        w = set_params_with_array(w, params, property_dict)
        w.requires_grad_(True)
        loss = 0.
        if not ignore_prior:
            for name, module, prior, closure, _ in w.named_priors():
                prior_term = prior.log_prob(closure(module))
                loss -= prior_term.sum(dim=-1)
        negll = nll(w(x.to(torch.float64)).to(torch.float)).sum()
        #if loss != 0.:
        #    print(loss.item(), negll.item())
        loss = loss + negll
        return w, loss

    def opt_f(params, w):
        w, loss = loss_f(params, w)

        w.zero_grad()
        loss.backward()
        grad = []
        param_dict = OrderedDict(w.named_parameters())

        for p_name in property_dict:
            t = param_dict[p_name].grad
            if t is None:
                # this deals with parameters that do not affect the loss
                grad.append(np.zeros(property_dict[p_name].shape.numel()))
            else:
                grad.append(t.detach().view(-1).cpu().double().clone().numpy())
        w.zero_grad()
        # print(neg_mean_acq.detach().numpy(), x_eval.grad.detach().view(*x.shape).numpy())
        return loss.item(), np.concatenate(grad)

    if num_grad_steps:
        return scipy.optimize.minimize(partial(opt_f, w=w), params0, method='L-BFGS-B', jac=True, bounds=bounds,
                                       options={'maxiter': num_grad_steps})
    else:
        with torch.no_grad():
            return loss_f(params0, w), params0


def log_vs_nonlog(x, w, *args, **kwargs):
    if "true_nll" in kwargs:
        true_nll = kwargs["true_nll"]
        del kwargs["true_nll"]
    else:
        true_nll = None
    params, property_dict, _ = module_to_array(module=w)
    no_log = np.ones_like(params)
    log = np.array([1.9, 0.11] * (int(len(property_dict) / 2)))
    loss_no_log = fit_lbfgs(x, w, *args, **{**kwargs, 'num_grad_steps': 0}, params0=no_log)
    loss_log = fit_lbfgs(x, w, *args, **{**kwargs, 'num_grad_steps': 0}, params0=log)
    print("loss no log", loss_no_log[0][1], "loss log", loss_log[0][1])
    if loss_no_log[0][1] < loss_log[0][1]:
        set_params_with_array(module=w, x=loss_no_log[1], property_dict=property_dict)
    if true_nll:
        best_params, _, _ = module_to_array(module=w)
        print("true nll", fit_lbfgs(x, w, true_nll, **{**kwargs, 'num_grad_steps': 0}, params0=best_params))


def fit_lbfgs_with_restarts(x, w, *args, old_solution=None, rs_size=50, **kwargs):
    if "true_nll" in kwargs:
        true_nll = kwargs["true_nll"]
        del kwargs["true_nll"]
    else:
        true_nll = None
    rs_results = []
    if old_solution:
        rs_results.append(fit_lbfgs(x, old_solution, *args, **{**kwargs, 'num_grad_steps': 0}))
    for i in range(rs_size):
        with torch.no_grad():
            w.concentration0[:] = w.concentration0_prior()
            w.concentration1[:] = w.concentration1_prior()
        rs_results.append(fit_lbfgs(x, w, *args, **{**kwargs, 'num_grad_steps': 0}))
    best_r = min(rs_results, key=lambda r: r[0][1])
    print('best r', best_r)
    with torch.set_grad_enabled(True):
        r = fit_lbfgs(x, w, *args, **kwargs, params0=best_r[1])
    _, property_dict, _ = module_to_array(module=w)
    set_params_with_array(module=w, x=r.x, property_dict=property_dict)
    print('final r', r)
    if true_nll:
        print("true nll", fit_lbfgs(x, w, true_nll, **{**kwargs, 'num_grad_steps': 0}, params0=r.x))
    return r


# use seed 0 for sampling indices, and reset seed afterwards
old_seed = random.getstate()
random.seed(0)
one_out_indices_sampled_per_num_obs = [None]+[random.sample(range(i), min(10, i)) for i in range(1, 100)]
random.setstate(old_seed)

# use seed 0 for sampling subsets
old_seed = random.getstate()
random.seed(0)
subsets = [None]+[[random.sample(range(i), i//2) for _ in range(10)] for i in range(1, 100)]
neg_subsets = [None]+[[list(set(range(i)) - set(s)) for s in ss] for i, ss in enumerate(subsets[1:], 1)]
random.setstate(old_seed)



def fit_input_warping(model, x, y, nll_type='fast', old_solution=None, opt_method="lbfgs", **kwargs):
    """

    :param model:
    :param x: shape (n, d)
    :param y: shape (n, 1)
    :param nll_type:
    :param kwargs: Possible kwargs: `num_grad_steps`, `rs_size`
    :return:
    """
    device = x.device
    assert y.device == device, y.device

    model.requires_grad_(False)

    w = Warp(range(x.shape[1]),
             concentration1_prior=LogNormalPrior(torch.tensor(0.0, device=device), torch.tensor(.75, device=device)),
             concentration0_prior=LogNormalPrior(torch.tensor(0.0, device=device), torch.tensor(.75, device=device)),
             eps=1e-12)
    w.to(device)

    def fast_nll(x):  # noqa actually used with `eval` below
        model.requires_grad_(False)
        if model.style_encoder is not None:
            style = torch.zeros(1, 1, dtype=torch.int64, device=device)
            utils.print_once("WARNING: using style 0 for input warping, this is set for nonmyopic BO setting.")
        else:
            style = None
        logits = model(x[:, None], y[:, None], x[:, None], style=style, only_return_standard_out=True)
        loss = model.criterion(logits, y[:, None]).squeeze(1)
        return loss

    def true_nll(x): # noqa actually used with `eval` below
        assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
        model.requires_grad_(False)
        total_nll = 0.
        for cutoff in range(len(x)):
            logits = model(x[:cutoff, None], y[:cutoff, None], x[cutoff:cutoff + 1, None])
            total_nll = total_nll + model.criterion(logits, y[cutoff:cutoff + 1, None]).squeeze()
        assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
        return total_nll

    def repeated_true_nll(x): # noqa actually used with `eval` below
        assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
        model.requires_grad_(False)
        total_nll = 0.
        for i in range(5):
            rs = np.random.RandomState(i)
            shuffle_idx = rs.permutation(len(x))
            x_ = x.clone()[shuffle_idx]
            y_ = y.clone()[shuffle_idx]
            for cutoff in range(len(x)):
                logits = model(x_[:cutoff, None], y_[:cutoff, None], x_[cutoff:cutoff + 1, None])
                total_nll = total_nll + model.criterion(logits, y_[cutoff:cutoff + 1, None]).squeeze()
        assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
        return total_nll

    def repeated_true_100_nll(x): # noqa actually used with `eval` below
        assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
        model.requires_grad_(False)
        total_nll = 0.
        for i in range(100):
            rs = np.random.RandomState(i)
            shuffle_idx = rs.permutation(len(x))
            x_ = x.clone()[shuffle_idx]
            y_ = y.clone()[shuffle_idx]
            for cutoff in range(len(x)):
                logits = model(x_[:cutoff, None], y_[:cutoff, None], x_[cutoff:cutoff + 1, None])
                total_nll = total_nll + model.criterion(logits, y_[cutoff:cutoff + 1, None]).squeeze()
        assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
        return total_nll / 100

    def batched_repeated_chunked_true_nll(x): # noqa actually used with `eval` below
        assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
        assert len(x.shape) == 2 and len(y.shape) == 1
        model.requires_grad_(False)
        n_features = x.shape[1] if len(x.shape) > 1 else 1
        batch_size = 10

        X = []
        Y = []

        for i in range(batch_size):
            #if i == 0:
            #    shuffle_idx = list(range(len(x)))
            #else:
            rs = np.random.RandomState(i)
            shuffle_idx = rs.permutation(len(x))
            X.append(x.clone()[shuffle_idx])
            Y.append(y.clone()[shuffle_idx])
        X = torch.stack(X, dim=1).view((x.shape[0], batch_size, n_features))
        Y = torch.stack(Y, dim=1).view((x.shape[0], batch_size, 1))

        total_nll = 0.
        batch_indizes = sorted(list(set(np.linspace(0, len(x), 10, dtype=int))))

        for chunk_start, chunk_end in zip(batch_indizes[:-1], batch_indizes[1:]):
            X_cutoff = X[:chunk_start]
            Y_cutoff = Y[:chunk_start]
            X_after_cutoff = X[chunk_start:chunk_end]
            Y_after_cutoff = Y[chunk_start:chunk_end]

            pending_x = X_after_cutoff.reshape(X_after_cutoff.shape[0], batch_size, n_features)  # n_pen x batch_size x n_feat
            observed_x = X_cutoff.reshape(X_cutoff.shape[0], batch_size, n_features)  # n_obs x batch_size x n_feat
            X_tmp = torch.cat((observed_x, pending_x), dim=0)  # (n_obs+n_pen) x batch_size x n_feat

            logits = model((X_tmp, Y_cutoff), single_eval_pos=int(chunk_start))
            total_nll = total_nll + model.criterion(logits, Y_after_cutoff).sum()
        assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
        return total_nll

    def batched_repeated_true_nll(x): # noqa actually used with `eval` below
        assert model.style_encoder is None, "true nll not implemented for style encoder, see above for an example impl"
        model.requires_grad_(False)
        n_features = x.shape[1] if len(x.shape) > 1 else 1
        batch_size = 10

        X = []
        Y = []

        for i in range(batch_size):
            #if i == 0:
            #    shuffle_idx = list(range(len(x)))
            #else:
            rs = np.random.RandomState(i)
            shuffle_idx = rs.permutation(len(x))
            X.append(x.clone()[shuffle_idx])
            Y.append(y.clone()[shuffle_idx])
        X = torch.cat(X, dim=1).reshape((x.shape[0], batch_size, n_features))
        Y = torch.cat(Y, dim=1).reshape((x.shape[0], batch_size, 1))

        total_nll = 0.

        for cutoff in range(0, len(x)):
            X_cutoff = X[:cutoff]
            Y_cutoff = Y[:cutoff]
            X_after_cutoff = X[cutoff:cutoff+1]
            Y_after_cutoff = Y[cutoff:cutoff+1]

            pending_x = X_after_cutoff.reshape(X_after_cutoff.shape[0], batch_size, n_features)  # n_pen x batch_size x n_feat
            observed_x = X_cutoff.reshape(X_cutoff.shape[0], batch_size, n_features)  # n_obs x batch_size x n_feat
            X_tmp = torch.cat((observed_x, pending_x), dim=0)  # (n_obs+n_pen) x batch_size x n_feat

            pad_y = torch.zeros((X_after_cutoff.shape[0], batch_size, 1))  # (n_obs+n_pen) x batch_size
            Y_tmp = torch.cat((Y_cutoff, pad_y), dim=0)

            logits = model((X_tmp, Y_tmp), single_eval_pos=cutoff)
            total_nll = total_nll + model.criterion(logits, Y_after_cutoff).sum()
        assert len(total_nll.shape) == 0, f"{total_nll.shape=}"
        return total_nll

    def one_out_nll(x):  # noqa actually used with `eval` below
        assert model.style_encoder is None, "one out nll not implemented for style encoder, see above for an example impl"
        # x shape: (n, d)
        # iterate over a pre-defined set of
        model.requires_grad_(False)
        #indices = one_out_indices_sampled_per_num_obs[len(x)]
        indices = list(range(x.shape[0]))

        # create batch by moving the one out index to the end
        eval_x = x[indices][None] # shape (1, 10, d)
        eval_y = y[indices][None] # shape (1, 10, 1)
        # all other indices are used for training
        train_x = torch.stack([torch.cat([x[:i], x[i + 1:]]) for i in indices], 1)
        train_y = torch.stack([torch.cat([y[:i], y[i + 1:]]) for i in indices], 1)

        logits = model(train_x, train_y, eval_x)
        return model.criterion(logits, eval_y).squeeze(0)

    def subset_nll(x):  # noqa actually used with `eval` below
        assert model.style_encoder is None, "subset nll not implemented for style encoder, see above for an example impl"
        # x shape: (n, d)
        # iterate over a pre-defined set of
        model.requires_grad_(False)
        eval_indices = torch.tensor(subsets[len(x)])
        train_indices = torch.tensor(neg_subsets[len(x)])

        # batch by using all eval_indices
        eval_x = x[eval_indices.flatten()].view(eval_indices.shape + (-1,)) # shape (10, n//2, d)
        eval_y = y[eval_indices.flatten()].view(eval_indices.shape + (-1,)) # shape (10, n//2, 1)
        # all other indices are used for training
        train_x = x[train_indices.flatten()].view(train_indices.shape + (-1,)) # shape (10, n//2, d)
        train_y = y[train_indices.flatten()].view(train_indices.shape + (-1,)) # shape (10, n//2, 1)

        logits = model(train_x.transpose(0, 1), train_y.transpose(0, 1), eval_x.transpose(0, 1))
        return model.criterion(logits, eval_y.transpose(0, 1))

    if opt_method == "log_vs_nolog":
        log_vs_nonlog(x, w, eval(nll_type + '_nll'),
            ignore_prior=True, # true_nll=repeated_true_100_nll,
            **kwargs)
    elif opt_method == "lbfgs":
        fit_lbfgs_with_restarts(
            x, w, eval(nll_type + '_nll'),
            ignore_prior=True, old_solution=old_solution, # true_nll=repeated_true_100_nll,
            **kwargs)
    elif opt_method == "lbfgs_w_prior":
        fit_lbfgs_with_restarts(
            x, w, eval(nll_type + '_nll'),
            ignore_prior=False, old_solution=old_solution,  # true_nll=repeated_true_100_nll,
            **kwargs)
    else:
        raise ValueError(opt_method)

    return w





















#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
A converter that simplifies using numpy-based optimizers with generic torch
`nn.Module` classes. This enables using a `scipy.optim.minimize` optimizer
for optimizing module parameters.
"""



from collections import OrderedDict
from math import inf
from numbers import Number
from typing import Dict, List, Optional, Set, Tuple
from warnings import warn

import numpy as np
import torch
from botorch.optim.utils import (
    _get_extra_mll_args,
    _handle_numerical_errors,
    get_name_filter,
    get_parameters_and_bounds,
    TorchAttr,
)
from gpytorch.mlls import MarginalLogLikelihood
from torch.nn import Module


def module_to_array(
    module: Module,
    bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None,
    exclude: Optional[Set[str]] = None,
) -> Tuple[np.ndarray, Dict[str, TorchAttr], Optional[np.ndarray]]:
    r"""Extract named parameters from a module into a numpy array.

    Only extracts parameters with requires_grad, since it is meant for optimizing.

    Args:
        module: A module with parameters. May specify parameter constraints in
            a `named_parameters_and_constraints` method.
        bounds: A dictionary mapping parameter names t lower and upper bounds.
            of lower and upper bounds. Bounds specified here take precedence
            over bounds on the same parameters specified in the constraints
            registered with the module.
        exclude: A list of parameter names that are to be excluded from extraction.

    Returns:
        3-element tuple containing
        - The parameter values as a numpy array.
        - An ordered dictionary with the name and tensor attributes of each
        parameter.
        - A `2 x n_params` numpy array with lower and upper bounds if at least
        one constraint is finite, and None otherwise.

    Example:
        >>> mll = ExactMarginalLogLikelihood(model.likelihood, model)
        >>> parameter_array, property_dict, bounds_out = module_to_array(mll)
    """
    warn(
        "`module_to_array` is marked for deprecation, consider using "
        "`get_parameters_and_bounds`, `get_parameters_as_ndarray_1d`, or "
        "`get_bounds_as_ndarray` instead.",
        DeprecationWarning,
    )
    param_dict, bounds_dict = get_parameters_and_bounds(
        module=module,
        name_filter=None if exclude is None else get_name_filter(exclude),
        requires_grad=True,
    )
    if bounds is not None:
        bounds_dict.update(bounds)

    # Record tensor metadata and read parameter values to the tape
    param_tape: List[Number] = []
    property_dict = OrderedDict()
    with torch.no_grad():
        for name, param in param_dict.items():
            property_dict[name] = TorchAttr(param.shape, param.dtype, param.device)
            param_tape.extend(param.view(-1).cpu().double().tolist())

    # Extract lower and upper bounds
    start = 0
    bounds_np = None
    params_np = np.asarray(param_tape)
    for name, param in param_dict.items():
        numel = param.numel()
        if name in bounds_dict:
            for row, bound in enumerate(bounds_dict[name]):
                if bound is None:
                    continue

                if torch.is_tensor(bound):
                    if (bound == (2 * row - 1) * inf).all():
                        continue
                    bound = bound.detach().cpu()

                elif bound == (2 * row - 1) * inf:
                    continue

                if bounds_np is None:
                    bounds_np = np.full((2, len(params_np)), ((-inf,), (inf,)))

                bounds_np[row, start : start + numel] = bound
        start += numel

    return params_np, property_dict, bounds_np




def set_params_with_array(
    module: Module, x: np.ndarray, property_dict: Dict[str, TorchAttr]
) -> Module:
    r"""Set module parameters with values from numpy array.

    Args:
        module: Module with parameters to be set
        x: Numpy array with parameter values
        property_dict: Dictionary of parameter names and torch attributes as
            returned by module_to_array.

    Returns:
        Module: module with parameters updated in-place.

    Example:
        >>> mll = ExactMarginalLogLikelihood(model.likelihood, model)
        >>> parameter_array, property_dict, bounds_out = module_to_array(mll)
        >>> parameter_array += 0.1  # perturb parameters (for example only)
        >>> mll = set_params_with_array(mll, parameter_array,  property_dict)
    """
    warn(
        "`_set_params_with_array` is marked for deprecation, consider using "
        "`set_parameters_from_ndarray_1d` instead.",
        DeprecationWarning,
    )
    param_dict = OrderedDict(module.named_parameters())
    start_idx = 0
    for p_name, attrs in property_dict.items():
        # Construct the new tensor
        if len(attrs.shape) == 0:  # deal with scalar tensors
            end_idx = start_idx + 1
            new_data = torch.tensor(
                x[start_idx], dtype=attrs.dtype, device=attrs.device
            )
        else:
            end_idx = start_idx + np.prod(attrs.shape)
            new_data = torch.tensor(
                x[start_idx:end_idx], dtype=attrs.dtype, device=attrs.device
            ).view(*attrs.shape)
        start_idx = end_idx
        # Update corresponding parameter in-place. Disable autograd to update.
        param_dict[p_name].requires_grad_(False)
        param_dict[p_name].copy_(new_data)
        param_dict[p_name].requires_grad_(True)
    return module