Spaces:
Sleeping
Sleeping
File size: 24,176 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import contextlib
from .. import transformer
from .. import bar_distribution
import torch
import scipy
import math
from sklearn.preprocessing import power_transform, PowerTransformer
def log01(x, eps=.0000001, input_between_zero_and_one=False):
logx = torch.log(x + eps)
if input_between_zero_and_one:
return (logx - math.log(eps)) / (math.log(1 + eps) - math.log(eps))
return (logx - logx.min(0)[0]) / (logx.max(0)[0] - logx.min(0)[0])
def log01_batch(x, eps=.0000001, input_between_zero_and_one=False):
x = x.repeat(1, x.shape[-1] + 1, 1)
for b in range(x.shape[-1]):
x[:, b, b] = log01(x[:, b, b], eps=eps, input_between_zero_and_one=input_between_zero_and_one)
return x
def lognormed_batch(x, eval_pos, eps=.0000001):
x = x.repeat(1, x.shape[-1] + 1, 1)
for b in range(x.shape[-1]):
logx = torch.log(x[:, b, b]+eps)
x[:, b, b] = (logx - logx[:eval_pos].mean(0))/logx[:eval_pos].std(0)
return x
def _rank_transform(x_train, x):
assert len(x_train.shape) == len(x.shape) == 1
relative_to = torch.cat((torch.zeros_like(x_train[:1]),x_train.unique(sorted=True,), torch.ones_like(x_train[-1:])),-1)
higher_comparison = (relative_to < x[...,None]).sum(-1).clamp(min=1)
pos_inside_interval = (x - relative_to[higher_comparison-1])/(relative_to[higher_comparison] - relative_to[higher_comparison-1])
x_transformed = higher_comparison - 1 + pos_inside_interval
return x_transformed/(len(relative_to)-1.)
def rank_transform(x_train, x):
assert x.shape[1] == x_train.shape[1], f"{x.shape=} and {x_train.shape=}"
# make sure everything is between 0 and 1
assert (x_train >= 0.).all() and (x_train <= 1.).all(), f"{x_train=}"
assert (x >= 0.).all() and (x <= 1.).all(), f"{x=}"
return_x = x.clone()
for feature_dim in range(x.shape[1]):
return_x[:, feature_dim] = _rank_transform(x_train[:, feature_dim], x[:, feature_dim])
return return_x
def general_power_transform(x_train, x_apply, eps, less_safe=False):
if eps > 0:
try:
pt = PowerTransformer(method='box-cox')
pt.fit(x_train.cpu()+eps)
x_out = torch.tensor(pt.transform(x_apply.cpu()+eps), dtype=x_apply.dtype, device=x_apply.device)
except ValueError as e:
print(e)
x_out = x_apply - x_train.mean(0)
else:
pt = PowerTransformer(method='yeo-johnson')
if not less_safe and (x_train.std() > 1_000 or x_train.mean().abs() > 1_000):
x_apply = (x_apply - x_train.mean(0)) / x_train.std(0)
x_train = (x_train - x_train.mean(0)) / x_train.std(0)
# print('inputs are LAARGEe, normalizing them')
try:
pt.fit(x_train.cpu().double())
except ValueError as e:
print('caught this errrr', e)
if less_safe:
x_train = (x_train - x_train.mean(0)) / x_train.std(0)
x_apply = (x_apply - x_train.mean(0)) / x_train.std(0)
else:
x_train = x_train - x_train.mean(0)
x_apply = x_apply - x_train.mean(0)
pt.fit(x_train.cpu().double())
x_out = torch.tensor(pt.transform(x_apply.cpu()), dtype=x_apply.dtype, device=x_apply.device)
if torch.isnan(x_out).any() or torch.isinf(x_out).any():
print('WARNING: power transform failed')
print(f"{x_train=} and {x_apply=}")
x_out = x_apply - x_train.mean(0)
return x_out
#@torch.inference_mode()
def general_acq_function(model: transformer.TransformerModel, x_given, y_given, x_eval, apply_power_transform=True,
rand_sample=False, znormalize=False, pre_normalize=False, pre_znormalize=False, predicted_mean_fbest=False,
input_znormalize=False, max_dataset_size=10_000, remove_features_with_one_value_only=False,
return_actual_ei=False, acq_function='ei', ucb_rest_prob=.05, ensemble_log_dims=False,
ensemble_type='mean_probs', # in ('mean_probs', 'max_acq')
input_power_transform=False, power_transform_eps=.0, input_power_transform_eps=.0,
input_rank_transform=False, ensemble_input_rank_transform=False,
ensemble_power_transform=False, ensemble_feature_rotation=False,
style=None, outlier_stretching_interval=0.0, verbose=False, unsafe_power_transform=False,
):
"""
Differences to HEBO:
- The noise can't be set in the same way, as it depends on the tuning of HPs via VI.
- Log EI and PI are always used directly instead of using the approximation.
This is a stochastic function, relying on torch.randn
:param model:
:param x_given: torch.Tensor of shape (N, D)
:param y_given: torch.Tensor of shape (N, 1) or (N,)
:param x_eval: torch.Tensor of shape (M, D)
:param kappa:
:param eps:
:return:
"""
assert ensemble_type in ('mean_probs', 'max_acq')
if rand_sample is not False \
and (len(x_given) == 0 or
((1 + x_given.shape[1] if rand_sample is None else max(2, rand_sample)) > x_given.shape[0])):
print('rando')
return torch.zeros_like(x_eval[:,0]) #torch.randperm(x_eval.shape[0])[0]
y_given = y_given.reshape(-1)
assert len(y_given) == len(x_given)
if apply_power_transform:
if pre_normalize:
y_normed = y_given / y_given.std()
if not torch.isinf(y_normed).any() and not torch.isnan(y_normed).any():
y_given = y_normed
elif pre_znormalize:
y_znormed = (y_given - y_given.mean()) / y_given.std()
if not torch.isinf(y_znormed).any() and not torch.isnan(y_znormed).any():
y_given = y_znormed
y_given = general_power_transform(y_given.unsqueeze(1), y_given.unsqueeze(1), power_transform_eps, less_safe=unsafe_power_transform).squeeze(1)
if verbose:
print(f"{y_given=}")
#y_given = torch.tensor(power_transform(y_given.cpu().unsqueeze(1), method='yeo-johnson', standardize=znormalize), device=y_given.device, dtype=y_given.dtype,).squeeze(1)
y_given_std = torch.tensor(1., device=y_given.device, dtype=y_given.dtype)
if znormalize and not apply_power_transform:
if len(y_given) > 1:
y_given_std = y_given.std()
y_given_mean = y_given.mean()
y_given = (y_given - y_given_mean) / y_given_std
if remove_features_with_one_value_only:
x_all = torch.cat([x_given, x_eval], dim=0)
only_one_value_feature = torch.tensor([len(torch.unique(x_all[:,i])) for i in range(x_all.shape[1])]) == 1
x_given = x_given[:,~only_one_value_feature]
x_eval = x_eval[:,~only_one_value_feature]
if outlier_stretching_interval > 0.:
tx = torch.cat([x_given, x_eval], dim=0)
m = outlier_stretching_interval
eps = 1e-10
small_values = (tx < m) & (tx > 0.)
tx[small_values] = m * (torch.log(tx[small_values] + eps) - math.log(eps)) / (math.log(m + eps) - math.log(eps))
large_values = (tx > 1. - m) & (tx < 1.)
tx[large_values] = 1. - m * (torch.log(1 - tx[large_values] + eps) - math.log(eps)) / (
math.log(m + eps) - math.log(eps))
x_given = tx[:len(x_given)]
x_eval = tx[len(x_given):]
if input_znormalize: # implementation that relies on the test set, too...
std = x_given.std(dim=0)
std[std == 0.] = 1.
mean = x_given.mean(dim=0)
x_given = (x_given - mean) / std
x_eval = (x_eval - mean) / std
if input_power_transform:
x_given = general_power_transform(x_given, x_given, input_power_transform_eps)
x_eval = general_power_transform(x_given, x_eval, input_power_transform_eps)
if input_rank_transform is True or input_rank_transform == 'full': # uses test set x statistics...
x_all = torch.cat((x_given,x_eval), dim=0)
for feature_dim in range(x_all.shape[-1]):
uniques = torch.sort(torch.unique(x_all[..., feature_dim])).values
x_eval[...,feature_dim] = torch.searchsorted(uniques,x_eval[..., feature_dim]).float() / (len(uniques)-1)
x_given[...,feature_dim] = torch.searchsorted(uniques,x_given[..., feature_dim]).float() / (len(uniques)-1)
elif input_rank_transform is False:
pass
elif input_rank_transform == 'train':
x_given = rank_transform(x_given, x_given)
x_eval = rank_transform(x_given, x_eval)
elif input_rank_transform.startswith('train'):
likelihood = float(input_rank_transform.split('_')[-1])
if torch.rand(1).item() < likelihood:
print('rank transform')
x_given = rank_transform(x_given, x_given)
x_eval = rank_transform(x_given, x_eval)
else:
raise NotImplementedError
# compute logits
criterion: bar_distribution.BarDistribution = model.criterion
x_predict = torch.cat([x_given, x_eval], dim=0)
logits_list = []
for x_feed in torch.split(x_predict, max_dataset_size, dim=0):
x_full_feed = torch.cat([x_given, x_feed], dim=0).unsqueeze(1)
y_full_feed = y_given.unsqueeze(1)
if ensemble_log_dims == '01':
x_full_feed = log01_batch(x_full_feed)
elif ensemble_log_dims == 'global01' or ensemble_log_dims is True:
x_full_feed = log01_batch(x_full_feed, input_between_zero_and_one=True)
elif ensemble_log_dims == '01-10':
x_full_feed = torch.cat((log01_batch(x_full_feed)[:, :-1], log01_batch(1. - x_full_feed)), 1)
elif ensemble_log_dims == 'norm':
x_full_feed = lognormed_batch(x_full_feed, len(x_given))
elif ensemble_log_dims is not False:
raise NotImplementedError
if ensemble_feature_rotation:
x_full_feed = torch.cat([x_full_feed[:, :, (i+torch.arange(x_full_feed.shape[2])) % x_full_feed.shape[2]] for i in range(x_full_feed.shape[2])], dim=1)
if ensemble_input_rank_transform == 'train' or ensemble_input_rank_transform is True:
x_full_feed = torch.cat([rank_transform(x_given, x_full_feed[:,i,:])[:,None] for i in range(x_full_feed.shape[1])] + [x_full_feed], dim=1)
if ensemble_power_transform:
assert apply_power_transform is False
y_full_feed = torch.cat((general_power_transform(y_full_feed, y_full_feed, power_transform_eps), y_full_feed), dim=1)
if style is not None:
if callable(style):
style = style()
if isinstance(style, torch.Tensor):
style = style.to(x_full_feed.device)
else:
style = torch.tensor(style, device=x_full_feed.device).view(1, 1).repeat(x_full_feed.shape[1], 1)
logits = model(
(style,
x_full_feed.repeat_interleave(dim=1, repeats=y_full_feed.shape[1]),
y_full_feed.repeat(1,x_full_feed.shape[1])),
single_eval_pos=len(x_given)
)
if ensemble_type == 'mean_probs':
logits = logits.softmax(-1).mean(1, keepdim=True).log_() # (num given + num eval, 1, num buckets)
# print('in ensemble_type == mean_probs ')
logits_list.append(logits) # (< max_dataset_size, 1 , num_buckets)
logits = torch.cat(logits_list, dim=0) # (num given + num eval, 1 or (num_features+1), num buckets)
del logits_list, x_full_feed
if torch.isnan(logits).any():
print('nan logits')
print(f"y_given: {y_given}, x_given: {x_given}, x_eval: {x_eval}")
print(f"logits: {logits}")
return torch.zeros_like(x_eval[:,0])
#logits = model((torch.cat([x_given, x_given, x_eval], dim=0).unsqueeze(1),
# torch.cat([y_given, torch.zeros(len(x_eval)+len(x_given), device=y_given.device)], dim=0).unsqueeze(1)),
# single_eval_pos=len(x_given))[:,0] # (N + M, num_buckets)
logits_given = logits[:len(x_given)]
logits_eval = logits[len(x_given):]
#tau = criterion.mean(logits_given)[torch.argmax(y_given)] # predicted mean at the best y
if predicted_mean_fbest:
tau = criterion.mean(logits_given)[torch.argmax(y_given)].squeeze(0)
else:
tau = torch.max(y_given)
#log_ei = torch.stack([criterion.ei(logits_eval[:,i], noisy_best_f[i]).log() for i in range(len(logits_eval))],0)
def acq_ensembling(acq_values): # (points, ensemble dim)
return acq_values.max(1).values
if isinstance(acq_function, (dict,list)):
acq_function = acq_function[style]
if acq_function == 'ei':
acq_value = acq_ensembling(criterion.ei(logits_eval, tau))
elif acq_function == 'ei_or_rand':
if torch.rand(1).item() < 0.5:
acq_value = torch.rand(len(x_eval))
else:
acq_value = acq_ensembling(criterion.ei(logits_eval, tau))
elif acq_function == 'pi':
acq_value = acq_ensembling(criterion.pi(logits_eval, tau))
elif acq_function == 'ucb':
acq_function = criterion.ucb
if ucb_rest_prob is not None:
acq_function = lambda *args: criterion.ucb(*args, rest_prob=ucb_rest_prob)
acq_value = acq_ensembling(acq_function(logits_eval, tau))
elif acq_function == 'mean':
acq_value = acq_ensembling(criterion.mean(logits_eval))
elif acq_function.startswith('hebo'):
noise, upsi, delta, eps = (float(v) for v in acq_function.split('_')[1:])
noise = y_given_std * math.sqrt(2 * noise)
kappa = math.sqrt(upsi * 2 * ((2.0 + x_given.shape[1] / 2.0) * math.log(max(1, len(x_given))) + math.log(
3 * math.pi ** 2 / (3 * delta))))
rest_prob = 1. - .5 * (1 + torch.erf(torch.tensor(kappa / math.sqrt(2), device=logits.device)))
ucb = acq_ensembling(criterion.ucb(logits_eval, None, rest_prob=rest_prob)) \
+ torch.randn(len(logits_eval), device=logits_eval.device) * noise
noisy_best_f = tau + eps + \
noise * torch.randn(len(logits_eval), device=logits_eval.device)[:, None].repeat(1, logits_eval.shape[1])
log_pi = acq_ensembling(criterion.pi(logits_eval, noisy_best_f).log())
# log_ei = torch.stack([criterion.ei(logits_eval[:,i], noisy_best_f[i]).log() for i in range(len(logits_eval))],0)
log_ei = acq_ensembling(criterion.ei(logits_eval, noisy_best_f).log())
acq_values = torch.stack([ucb, log_ei, log_pi], dim=1)
def is_pareto_efficient(costs):
"""
Find the pareto-efficient points
:param costs: An (n_points, n_costs) array
:return: A (n_points, ) boolean array, indicating whether each point is Pareto efficient
"""
is_efficient = torch.ones(costs.shape[0], dtype=bool, device=costs.device)
for i, c in enumerate(costs):
if is_efficient[i]:
is_efficient[is_efficient.clone()] = (costs[is_efficient] < c).any(
1) # Keep any point with a lower cost
is_efficient[i] = True # And keep self
return is_efficient
acq_value = is_pareto_efficient(-acq_values)
else:
raise ValueError(f'Unknown acquisition function: {acq_function}')
max_acq = acq_value.max()
return acq_value if return_actual_ei else (acq_value == max_acq)
def optimize_acq(model, known_x, known_y, num_grad_steps=10, num_random_samples=100, lr=.01, **kwargs):
"""
intervals are assumed to be between 0 and 1
only works with ei
recommended extra kwarg: ensemble_input_rank_transform=='train'
:param model: model to optimize, should already handle different num_features with its encoder
You can add this simply with `model.encoder = encoders.VariableNumFeaturesEncoder(model.encoder, model.encoder.num_features)`
:param known_x: (N, num_features)
:param known_y: (N,)
:param num_grad_steps: int
:param num_random_samples: int
:param lr: float
:param kwargs: will be given to `general_acq_function`
:return:
"""
x_eval = torch.rand(num_random_samples, known_x.shape[1]).requires_grad_(True)
opt = torch.optim.Adam(params=[x_eval], lr=lr)
best_acq, best_x = -float('inf'), x_eval[0].detach()
for grad_step in range(num_grad_steps):
acq = general_acq_function(model, known_x, known_y, x_eval, return_actual_ei=True, **kwargs)
max_acq = acq.detach().max().item()
if max_acq > best_acq:
best_x = x_eval[acq.argmax()].detach()
best_acq = max_acq
(-acq.mean()).backward()
assert (x_eval.grad != 0.).any()
if torch.isfinite(x_eval.grad).all():
opt.step()
opt.zero_grad()
with torch.no_grad():
x_eval.clamp_(min=0., max=1.)
return best_x
def optimize_acq_w_lbfgs(model, known_x, known_y, num_grad_steps=15_000, num_candidates=100, pre_sample_size=100_000, device='cpu',
verbose=False, dims_wo_gradient_opt=[], rand_sample_func=None, **kwargs):
"""
intervals are assumed to be between 0 and 1
only works with deterministic acq
recommended extra kwarg: ensemble_input_rank_transform=='train'
:param model: model to optimize, should already handle different num_features with its encoder
You can add this simply with `model.encoder = encoders.VariableNumFeaturesEncoder(model.encoder, model.encoder.num_features)`
:param known_x: (N, num_features)
:param known_y: (N,)
:param num_grad_steps: int: how many steps to take inside of scipy, can be left high, as it stops most of the time automatically early
:param num_candidates: int: how many candidates to optimize with LBFGS, increases costs when higher
:param pre_sample_size: int: how many settings to try first with a random search, before optimizing the best with grads
:param dims_wo_gradient_opt: int: which dimensions to not optimize with gradients, but with random search only
:param rand_sample_func: function: how to sample random points, should be a function that takes a number of samples and returns a tensor
For example `lambda n: torch.rand(n, known_x.shape[1])`.
:param kwargs: will be given to `general_acq_function`
:return:
"""
num_features = known_x.shape[1]
dims_w_gradient_opt = sorted(set(range(num_features)) - set(dims_wo_gradient_opt))
known_x = known_x.to(device)
known_y = known_y.to(device)
pre_sample_size = max(pre_sample_size, num_candidates)
rand_sample_func = rand_sample_func or (lambda n: torch.rand(n, num_features, device=device))
if len(known_x) < pre_sample_size:
x_initial = torch.cat((rand_sample_func(pre_sample_size-len(known_x)).to(device), known_x), 0)
else:
x_initial = rand_sample_func(pre_sample_size)
x_initial = x_initial.clamp(min=0., max=1.)
x_initial_all = x_initial
model.to(device)
with torch.no_grad():
acq = general_acq_function(model, known_x, known_y, x_initial.to(device), return_actual_ei=True, **kwargs)
if verbose:
import matplotlib.pyplot as plt
if x_initial.shape[1] == 2:
plt.title('initial acq values, red -> blue')
plt.scatter(x_initial[:, 0][:100], x_initial[:, 1][:100], c=acq.cpu().numpy()[:100], cmap='RdBu')
x_initial = x_initial[acq.argsort(descending=True)[:num_candidates].cpu()].detach() # num_candidates x num_features
x_initial_all_ei = acq.cpu().detach()
def opt_f(x):
x_eval = torch.tensor(x).view(-1, len(dims_w_gradient_opt)).float().to(device).requires_grad_(True)
x_eval_new = x_initial.clone().detach().to(device)
x_eval_new[:, dims_w_gradient_opt] = x_eval
assert x_eval_new.requires_grad
assert not torch.isnan(x_eval_new).any()
model.requires_grad_(False)
acq = general_acq_function(model, known_x, known_y, x_eval_new, return_actual_ei=True, **kwargs)
neg_mean_acq = -acq.mean()
neg_mean_acq.backward()
#print(neg_mean_acq.detach().numpy(), x_eval.grad.detach().view(*x.shape).numpy())
with torch.no_grad():
x_eval.grad[x_eval.grad != x_eval.grad] = 0.
return neg_mean_acq.detach().cpu().to(torch.float64).numpy(), \
x_eval.grad.detach().view(*x.shape).cpu().to(torch.float64).numpy()
# Optimize best candidates with LBFGS
if num_grad_steps > 0 and len(dims_w_gradient_opt) > 0:
# the columns not in dims_wo_gradient_opt will be optimized with gradients
x_initial_for_gradient_opt = x_initial[:, dims_w_gradient_opt].detach().cpu().flatten().numpy() # x_initial.cpu().flatten().numpy()
res = scipy.optimize.minimize(opt_f, x_initial_for_gradient_opt, method='L-BFGS-B', jac=True,
bounds=[(0, 1)]*x_initial_for_gradient_opt.size,
options={'maxiter': num_grad_steps})
results = x_initial.cpu()
results[:, dims_w_gradient_opt] = torch.tensor(res.x).float().view(-1, len(dims_w_gradient_opt))
else:
results = x_initial.cpu()
results = results.clamp(min=0., max=1.)
# Recalculate the acq values for the best candidates
with torch.no_grad():
acq = general_acq_function(model, known_x, known_y, results.to(device), return_actual_ei=True, verbose=verbose, **kwargs)
#print(acq)
if verbose:
from scipy.stats import rankdata
import matplotlib.pyplot as plt
if results.shape[1] == 2:
plt.scatter(results[:, 0], results[:, 1], c=rankdata(acq.cpu().numpy()), marker='x', cmap='RdBu')
plt.show()
best_x = results[acq.argmax().item()].detach()
acq_order = acq.argsort(descending=True).cpu()
all_order = x_initial_all_ei.argsort(descending=True).cpu()
return best_x.detach(), results[acq_order].detach(), acq.cpu()[acq_order].detach(), x_initial_all.cpu()[all_order].detach(), x_initial_all_ei.cpu()[all_order].detach()
from ..utils import to_tensor
class TransformerBOMethod:
def __init__(self, model, acq_f=general_acq_function, device='cpu:0', fit_encoder=None, **kwargs):
self.model = model
self.device = device
self.kwargs = kwargs
self.acq_function = acq_f
self.fit_encoder = fit_encoder
@torch.no_grad()
def observe_and_suggest(self, X_obs, y_obs, X_pen, return_actual_ei=False):
# assert X_pen is not None
# assumptions about X_obs and X_pen:
# X_obs is a numpy array of shape (n_samples, n_features)
# y_obs is a numpy array of shape (n_samples,), between 0 and 1
# X_pen is a numpy array of shape (n_samples_left, n_features)
X_obs = to_tensor(X_obs, device=self.device).to(torch.float32)
y_obs = to_tensor(y_obs, device=self.device).to(torch.float32).view(-1)
X_pen = to_tensor(X_pen, device=self.device).to(torch.float32)
assert len(X_obs) == len(y_obs), "make sure both X_obs and y_obs have the same length."
self.model.to(self.device)
if self.fit_encoder is not None:
w = self.fit_encoder(self.model, X_obs, y_obs)
X_obs = w(X_obs)
X_pen = w(X_pen)
# with (torch.cuda.amp.autocast() if self.device.type != 'cpu' else contextlib.nullcontext()):
with (torch.cuda.amp.autocast() if self.device[:3] != 'cpu' else contextlib.nullcontext()):
acq_values = self.acq_function(self.model, X_obs, y_obs,
X_pen, return_actual_ei=return_actual_ei, **self.kwargs).cpu().clone() # bool array
acq_mask = acq_values.max() == acq_values
possible_next = torch.arange(len(X_pen))[acq_mask]
if len(possible_next) == 0:
possible_next = torch.arange(len(X_pen))
r = possible_next[torch.randperm(len(possible_next))[0]].cpu().item()
if return_actual_ei:
return r, acq_values
else:
return r
|