File size: 4,792 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from abc import ABCMeta, abstractmethod
from typing import Set, Optional
from dataclasses import dataclass, fields
import torch
from torch.utils.data import DataLoader

@dataclass
class Batch:
    """
    A batch of data, with non-optional x, y, and target_y attributes.
    All other attributes are optional.

    If you want to add an attribute for testing only, you can just assign it after creation like:
    ```
        batch = Batch(x=x, y=y, target_y=target_y)
        batch.test_attribute = test_attribute
    ```
    """
    # Required entries
    x: torch.Tensor
    y: torch.Tensor
    target_y: torch.Tensor

    # Optional Batch Entries
    style: Optional[torch.Tensor] = None
    style_hyperparameter_values: Optional[torch.Tensor] = None
    single_eval_pos: Optional[torch.Tensor] = None
    causal_model_dag: Optional[object] = None
    mean_prediction: Optional[bool] = None  # this controls whether to do mean prediction in bar_distribution for nonmyopic BO

    def other_filled_attributes(self, set_of_attributes: Set[str] = frozenset(('x', 'y', 'target_y'))):
        return [f.name for f in fields(self)
                if f.name not in set_of_attributes and
                getattr(self, f.name) is not None]


def safe_merge_batches_in_batch_dim(*batches, ignore_attributes=[]):
    """
    Merge all supported non-None fields in a pre-specified (general) way,
    e.g. mutliple batch.x are concatenated in the batch dimension.
    :param ignore_attributes: attributes to remove from the merged batch, treated as if they were None.
    :return:
    """
    not_none_fields = [f.name for f in fields(batches[0]) if f.name not in ignore_attributes and getattr(batches[0], f.name) is not None]
    assert all([set(not_none_fields) == set([f.name for f in fields(b) if f.name not in ignore_attributes and getattr(b, f.name) is not None]) for b in batches]), 'All batches must have the same fields!'
    merge_funcs = {
        'x': lambda xs: torch.cat(xs, 1),
        'y': lambda ys: torch.cat(ys, 1),
        'target_y': lambda target_ys: torch.cat(target_ys, 1),
        'style': lambda styles: torch.cat(styles, 0),
    }
    assert all(f in merge_funcs for f in not_none_fields), f'Unknown fields encountered in `safe_merge_batches_in_batch_dim`.'
    return Batch(**{f: merge_funcs[f]([getattr(batch, f) for batch in batches]) for f in not_none_fields})


def merge_batches(*batches, ignore_attributes=[]):
    assert False, "TODO: isn't this broken!? because catting in dim 0 seems wrong!?"
    def merge_attribute(attr_name, batch_sizes):
        attr = [getattr(batch, attr_name) for batch in batches]
        if type(attr[0]) is list:
            def make_list(sublist, i):
                if sublist is None:
                    return [None for _ in range(batch_sizes[i])]
                return sublist
            return sum([make_list(sublist, i) for i, sublist in enumerate(attr)], [])
        elif type(attr[0]) is torch.Tensor:
            return torch.cat(attr, 0)
        else:
            assert all(a is None for a in attr), f'Unknown type encountered in `merge_batches`.'\
                                                 f'To ignore this, please add `{attr}` to the `ignore_attributes`.'\
                                                 f'The following values are the problem: {attr_name}.'
            return None
    batch_sizes = [batch.x.shape[0] for batch in batches]
    return Batch(**{f.name: merge_attribute(f.name, batch_sizes) for f in fields(batches[0]) if f.name not in ignore_attributes})



class PriorDataLoader(DataLoader, metaclass=ABCMeta):
    @abstractmethod
    def __init__(self, num_steps, batch_size, eval_pos_seq_len_sampler, seq_len_maximum, device, **kwargs):
        """

        :param num_steps: int, first argument, the number of steps to take per epoch, i.e. iteration of the DataLoader
        :param batch_size: int, number of datasets per batch
        :param eval_pos_seq_len_sampler: callable, it takes no arguments and returns a tuple (single eval pos, bptt)
        :param kwargs: for future compatibility it is good to have a final all catch, as new kwargs might be introduced
        """
        pass

    # A class or object variable `num_features`: int
    # Optional: `validate` function that accepts a transformer model

    # The DataLoader iter should return batches of the form ([style], x, y), target_y, single_eval_pos
    # We follow sequence len (s) first, batch size (b) second. So x: (s,b,num_features), y,target_y: (s,b)
    # and style: Optional[(b,num_style_params)], style can be omitted or set to None, if it is not intended to be used.

    # For more references, see `priors/utils.py` for a pretty general implementation of a DataLoader
    # and `train.py` for the only call of it.