Spaces:
Sleeping
Sleeping
File size: 18,516 Bytes
bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 3b0da12 bbfe1cd 02589a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from test_functions.Ackley10D import *
from test_functions.Ackley2D import *
from test_functions.Ackley6D import *
from test_functions.HeatExchanger import *
from test_functions.CantileverBeam import *
from test_functions.Car import *
from test_functions.CompressionSpring import *
from test_functions.GKXWC1 import *
from test_functions.GKXWC2 import *
from test_functions.HeatExchanger import *
from test_functions.JLH1 import *
from test_functions.JLH2 import *
from test_functions.KeaneBump import *
from test_functions.GKXWC1 import *
from test_functions.GKXWC2 import *
from test_functions.PressureVessel import *
from test_functions.ReinforcedConcreteBeam import *
from test_functions.SpeedReducer import *
from test_functions.ThreeTruss import *
from test_functions.WeldedBeam import *
# Import other objective functions as needed
import time
from Rosen_PFN4BO import *
from PIL import Image
def s(input_string):
return input_string
def optimize(objective_function, iteration_input, progress=gr.Progress()):
# print(objective_function)
# Variable setup
Current_BEST = torch.tensor( -1e10 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -1e10 )
if objective_function=="CantileverBeam.png":
Current_BEST = torch.tensor( -82500 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -82500 )
elif objective_function=="CompressionSpring.png":
Current_BEST = torch.tensor( -8 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -8 )
elif objective_function=="HeatExchanger.png":
Current_BEST = torch.tensor( -30000 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -30000 )
elif objective_function=="ThreeTruss.png":
Current_BEST = torch.tensor( -300 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -300 )
elif objective_function=="Reinforcement.png":
Current_BEST = torch.tensor( -440 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -440 )
elif objective_function=="PressureVessel.png":
Current_BEST = torch.tensor( -40000 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -40000 )
elif objective_function=="SpeedReducer.png":
Current_BEST = torch.tensor( -3200 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -3200 )
elif objective_function=="WeldedBeam.png":
Current_BEST = torch.tensor( -35 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -35 )
elif objective_function=="Car.png":
Current_BEST = torch.tensor( -35 ) # Some arbitrary very small number
Prev_BEST = torch.tensor( -35 )
# Initial random samples
# print(objective_functions)
trained_X = torch.rand(20, objective_functions[objective_function]['dim'])
# Scale it to the domain of interest using the selected function
# print(objective_function)
X_Scaled = objective_functions[objective_function]['scaling'](trained_X)
# Get the constraints and objective
trained_gx, trained_Y = objective_functions[objective_function]['function'](X_Scaled)
# Convergence list to store best values
convergence = []
time_conv = []
START_TIME = time.time()
# with gr.Progress(track_tqdm=True) as progress:
# Optimization Loop
for ii in progress.tqdm(range(iteration_input)): # Example with 100 iterations
# (0) Get the updated data for this iteration
X_scaled = objective_functions[objective_function]['scaling'](trained_X)
trained_gx, trained_Y = objective_functions[objective_function]['function'](X_scaled)
# (1) Randomly sample Xpen
X_pen = torch.rand(1000,trained_X.shape[1])
# (2) PFN inference phase with EI
default_model = 'final_models/model_hebo_morebudget_9_unused_features_3.pt'
ei, p_feas = Rosen_PFN_Parallel(default_model,
trained_X,
trained_Y,
trained_gx,
X_pen,
'power',
'ei'
)
# Calculating CEI
CEI = ei
for jj in range(p_feas.shape[1]):
CEI = CEI*p_feas[:,jj]
# (4) Get the next search value
rec_idx = torch.argmax(CEI)
best_candidate = X_pen[rec_idx,:].unsqueeze(0)
# (5) Append the next search point
trained_X = torch.cat([trained_X, best_candidate])
################################################################################
# This is just for visualizing the best value.
# This section can be remove for pure optimization purpose
Current_X = objective_functions[objective_function]['scaling'](trained_X)
Current_GX, Current_Y = objective_functions[objective_function]['function'](Current_X)
if ((Current_GX<=0).all(dim=1)).any():
Current_BEST = torch.max(Current_Y[(Current_GX<=0).all(dim=1)])
else:
Current_BEST = Prev_BEST
################################################################################
# (ii) Convergence tracking (assuming the best Y is to be maximized)
# if Current_BEST != -1e10:
# print(Current_BEST)
# print(convergence)
convergence.append(Current_BEST.abs())
time_conv.append(time.time() - START_TIME)
# Timing
END_TIME = time.time()
TOTAL_TIME = END_TIME - START_TIME
# Website visualization
# (i) Radar chart for trained_X
radar_chart = None
# radar_chart = create_radar_chart(X_scaled)
# (ii) Convergence tracking (assuming the best Y is to be maximized)
convergence_plot = create_convergence_plot(objective_function, iteration_input,
time_conv,
convergence, TOTAL_TIME)
return convergence_plot
# return radar_chart, convergence_plot
def create_radar_chart(X_scaled):
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
labels = [f'x{i+1}' for i in range(X_scaled.shape[1])]
values = X_scaled.mean(dim=0).numpy()
num_vars = len(labels)
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
values = np.concatenate((values, [values[0]]))
angles += angles[:1]
ax.fill(angles, values, color='green', alpha=0.25)
ax.plot(angles, values, color='green', linewidth=2)
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
# ax.set_xticklabels(labels)
ax.set_xticklabels([f'{label}\n({value:.2f})' for label, value in zip(labels, values[:-1])]) # Show values
ax.set_title("Selected Design", size=15, color='black', y=1.1)
plt.close(fig)
return fig
def create_convergence_plot(objective_function, iteration_input, time_conv, convergence, TOTAL_TIME):
fig, ax = plt.subplots()
# Realtime optimization data
ax.plot(time_conv, convergence, '^-', label='PFN-CBO (Realtime)' )
# Stored GP data
if objective_function=="CantileverBeam.png":
GP_TIME = torch.load('CantileverBeam_CEI_Avg_Time.pt')
GP_OBJ = torch.load('CantileverBeam_CEI_Avg_Obj.pt')
elif objective_function=="CompressionSpring.png":
GP_TIME = torch.load('CompressionSpring_CEI_Avg_Time.pt')
GP_OBJ = torch.load('CompressionSpring_CEI_Avg_Obj.pt')
elif objective_function=="HeatExchanger.png":
GP_TIME = torch.load('HeatExchanger_CEI_Avg_Time.pt')
GP_OBJ = torch.load('HeatExchanger_CEI_Avg_Obj.pt')
elif objective_function=="ThreeTruss.png":
GP_TIME = torch.load('ThreeTruss_CEI_Avg_Time.pt')
GP_OBJ = torch.load('ThreeTruss_CEI_Avg_Obj.pt')
elif objective_function=="Reinforcement.png":
GP_TIME = torch.load('ReinforcedConcreteBeam_CEI_Avg_Time.pt')
GP_OBJ = torch.load('ReinforcedConcreteBeam_CEI_Avg_Obj.pt')
elif objective_function=="PressureVessel.png":
GP_TIME = torch.load('PressureVessel_CEI_Avg_Time.pt')
GP_OBJ = torch.load('PressureVessel_CEI_Avg_Obj.pt')
elif objective_function=="SpeedReducer.png":
GP_TIME = torch.load('SpeedReducer_CEI_Avg_Time.pt')
GP_OBJ = torch.load('SpeedReducer_CEI_Avg_Obj.pt')
elif objective_function=="WeldedBeam.png":
GP_TIME = torch.load('WeldedBeam_CEI_Avg_Time.pt')
GP_OBJ = torch.load('WeldedBeam_CEI_Avg_Obj.pt')
elif objective_function=="Car.png":
GP_TIME = torch.load('Car_CEI_Avg_Time.pt')
GP_OBJ = torch.load('Car_CEI_Avg_Obj.pt')
# Plot GP data
ax.plot(GP_TIME[:iteration_input], GP_OBJ[:iteration_input], '^-', label='GP-CBO (Data)' )
ax.set_xlabel('Time (seconds)')
ax.set_ylabel('Objective Value (Minimization)')
ax.set_title('Convergence Plot for {t} iterations'.format(t=iteration_input))
# ax.legend()
if objective_function=="CantileverBeam.png":
ax.axhline(y=50000, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="CompressionSpring.png":
ax.axhline(y=0, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="HeatExchanger.png":
ax.axhline(y=4700, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="ThreeTruss.png":
ax.axhline(y=262, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="Reinforcement.png":
ax.axhline(y=355, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="PressureVessel.png":
ax.axhline(y=5000, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="SpeedReducer.png":
ax.axhline(y=2650, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="WeldedBeam.png":
ax.axhline(y=3.3, color='red', linestyle='--', label='Optimal Value')
elif objective_function=="Car.png":
ax.axhline(y=25, color='red', linestyle='--', label='Optimal Value')
ax.legend(loc='best')
# ax.legend(loc='lower left')
# Add text to the top right corner of the plot
if len(convergence) == 0:
ax.text(0.5, 0.5, 'No Feasible Design Found', transform=ax.transAxes, fontsize=12,
verticalalignment='top', horizontalalignment='right')
plt.close(fig)
return fig
# Define available objective functions
objective_functions = {
# "ThreeTruss.png": {"image": "ThreeTruss.png",
# "function": ThreeTruss,
# "scaling": ThreeTruss_Scaling,
# "dim": 2},
"CompressionSpring.png": {"image": "CompressionSpring.png",
"function": CompressionSpring,
"scaling": CompressionSpring_Scaling,
"dim": 3},
"Reinforcement.png": {"image": "Reinforcement.png", "function": ReinforcedConcreteBeam, "scaling": ReinforcedConcreteBeam_Scaling, "dim": 3},
"PressureVessel.png": {"image": "PressureVessel.png", "function": PressureVessel, "scaling": PressureVessel_Scaling, "dim": 4},
"SpeedReducer.png": {"image": "SpeedReducer.png", "function": SpeedReducer, "scaling": SpeedReducer_Scaling, "dim": 7},
"WeldedBeam.png": {"image": "WeldedBeam.png", "function": WeldedBeam, "scaling": WeldedBeam_Scaling, "dim": 4},
"HeatExchanger.png": {"image": "HeatExchanger.png", "function": HeatExchanger, "scaling": HeatExchanger_Scaling, "dim": 8},
"CantileverBeam.png": {"image": "CantileverBeam.png", "function": CantileverBeam, "scaling": CantileverBeam_Scaling, "dim": 10},
"Car.png": {"image": "Car.png", "function": Car, "scaling": Car_Scaling, "dim": 11},
}
# Extract just the image paths for the gallery
image_paths = [key for key in objective_functions]
def submit_action(objective_function_choices, iteration_input):
# print(iteration_input)
# print(len(objective_function_choices))
# print(objective_functions[objective_function_choices]['function'])
if len(objective_function_choices)>0:
selected_function = objective_functions[objective_function_choices]['function']
return optimize(objective_function_choices, iteration_input)
return None
# Function to clear the output
def clear_output():
# print(gallery.selected_index)
return gr.update(value=[], selected=None), None, 15, gr.Markdown(""), 'Formulation_default.png'
def reset_gallery():
return gr.update(value=image_paths)
with gr.Blocks() as demo:
# Centered Title and Description using gr.HTML
gr.HTML(
"""
<div style="text-align: center;">
<p style="text-align: center; font-size:30px;"><b>
Constrained Bayesian Optimization with Pre-trained Transformers
</b></p>
<p style="text-align: center; font-size:18px;"><b>
Paper: <a href="https://arxiv.org/abs/2404.04495">
Fast and Accurate Bayesian Optimization with Pre-trained Transformers for Constrained Engineering Problems</a>
</b></p>
<p style="text-align: left;font-size:18px;">
Explore our interactive demo that uses PFN (Prior-Data Fitted Networks) for solving constrained Bayesian optimization problems!
</p>
<p style="text-align: left;font-size:24px;"><b>
Get Started:
</b> </p>
<p style="text-align: left;font-size:18px;">
<ol style="text-align: left;font-size:18px;text-indent: 30px;">
<li> <b>Select a Problem:</b> Click on an image from the problem gallery to choose your objective function. </li>
<li> <b>Set Iterations:</b> Adjust the slider to set the number of iterations for the optimization process. </li>
<li> <b>Run Optimization:</b> Click "Submit" to start the optimization. Use "Clear" if you need to reselect your parameters. </li>
</ol>
</p>
</div>
"""
)
gr.HTML(
"""
<p style="text-align: left;font-size:24px;"><b>
Result Display:
</b> </p>
<p style="text-align: left;font-size:18px;">
<ol style="text-align: left;font-size:18px;text-indent: 30px;">
<li> <b>Panel Display:</b> Shows the problem formulation and the optimization results. </li>
<li> <b>Convergence Plot:</b> Visualizes the best observed objective against the algorithm's runtime over the chosen iterations. </li>
<ul>
<li> <b>PFN-CBO:</b> Displays results from real-time optimization. </li>
<li> <b>GP-CBO:</b> Provides pre-computed data from our past experiments, as GP real-time runs are impractical for a demo. </li>
</ul>
</ol>
</p>
"""
)
with gr.Row():
with gr.Column(variant='compact'):
# gr.Markdown("# Inputs: ")
with gr.Row():
gr.Markdown("## Select a problem (objective): ")
img_key = gr.Markdown(value="", visible=False)
gallery = gr.Gallery(value=image_paths, label="Objectives",
# height = 450,
object_fit='contain',
columns=3, rows=3, elem_id="gallery")
gr.Markdown("## Enter iteration Number: ")
iteration_input = gr.Slider(label="Iterations:", minimum=15, maximum=50, step=1, value=15)
# Row for the Clear and Submit buttons
with gr.Row():
clear_button = gr.Button("Clear")
submit_button = gr.Button("Submit", variant="primary")
with gr.Column():
# gr.Markdown("# Outputs: ")
gr.Markdown("""
## Convergence Plot:
""")
convergence_plot = gr.Plot(label="Convergence Plot")
gr.Markdown("")
gr.Markdown("## Problem formulation: ")
formulation = gr.Image(value='Formulation_default.png', label="Eq")
def handle_select(evt: gr.SelectData):
selected_image = evt.value
key = evt.value['image']['orig_name']
if key=="CantileverBeam.png":
formulation = 'Cantilever_formulation.png'
elif key=="CompressionSpring.png":
formulation = 'Compressed_Formulation.png'
elif key=="HeatExchanger.png":
formulation = 'Heat_Formulation.png'
elif key=="Reinforcement.png":
formulation = 'Reinforce_Formulation.png'
elif key=="PressureVessel.png":
formulation = 'Pressure_Formulation.png'
elif key=="SpeedReducer.png":
formulation = 'Speed_Formulation.png'
elif key=="WeldedBeam.png":
formulation = 'Welded_Formulation.png'
elif key=="Car.png":
formulation = 'Car_Formulation_2.png'
# formulation = 'Test_formulation.png'
# print('here')
# print(key)
return key, formulation
gallery.select(fn=handle_select, inputs=None, outputs=[img_key, formulation])
submit_button.click(
submit_action,
inputs=[img_key, iteration_input],
# outputs= [radar_plot, convergence_plot],
outputs= convergence_plot,
# progress=True # Enable progress tracking
)
clear_button.click(
clear_output,
inputs=None,
outputs=[gallery, convergence_plot, iteration_input, img_key, formulation]
).then(
# Step 2: Reset the gallery to the original list
reset_gallery,
inputs=None,
outputs=gallery
)
demo.launch(share=True) |