File size: 18,516 Bytes
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0da12
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0da12
 
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0da12
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0da12
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0da12
bbfe1cd
 
 
 
 
 
 
 
 
 
3b0da12
 
 
 
 
 
bbfe1cd
3b0da12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfe1cd
 
 
 
 
 
 
 
3b0da12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
3b0da12
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0da12
 
 
 
bbfe1cd
3b0da12
 
 
 
 
 
 
bbfe1cd
 
 
 
 
 
3b0da12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfe1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02589a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from test_functions.Ackley10D import *
from test_functions.Ackley2D import *
from test_functions.Ackley6D import *
from test_functions.HeatExchanger import *
from test_functions.CantileverBeam import *
from test_functions.Car import *
from test_functions.CompressionSpring import *
from test_functions.GKXWC1 import *
from test_functions.GKXWC2 import *
from test_functions.HeatExchanger import *
from test_functions.JLH1 import *
from test_functions.JLH2 import *
from test_functions.KeaneBump import *
from test_functions.GKXWC1 import *
from test_functions.GKXWC2 import *
from test_functions.PressureVessel import *
from test_functions.ReinforcedConcreteBeam import *
from test_functions.SpeedReducer import *
from test_functions.ThreeTruss import *
from test_functions.WeldedBeam import *
# Import other objective functions as needed
import time

from Rosen_PFN4BO import *
from PIL import Image















def s(input_string):
    return input_string




def optimize(objective_function, iteration_input, progress=gr.Progress()):

    # print(objective_function)

    # Variable setup
    Current_BEST = torch.tensor( -1e10 )   # Some arbitrary very small number
    Prev_BEST = torch.tensor( -1e10 )

    if objective_function=="CantileverBeam.png":
        Current_BEST = torch.tensor( -82500  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -82500 )
    elif objective_function=="CompressionSpring.png":
        Current_BEST = torch.tensor( -8  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -8 )
    elif objective_function=="HeatExchanger.png":
        Current_BEST = torch.tensor( -30000 )   # Some arbitrary very small number
        Prev_BEST = torch.tensor( -30000 )
    elif objective_function=="ThreeTruss.png":
        Current_BEST = torch.tensor( -300  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -300 )
    elif objective_function=="Reinforcement.png":
        Current_BEST = torch.tensor( -440   ) # Some arbitrary very small number
        Prev_BEST = torch.tensor( -440 )
    elif objective_function=="PressureVessel.png":
        Current_BEST = torch.tensor( -40000  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -40000    ) 
    elif objective_function=="SpeedReducer.png":
        Current_BEST = torch.tensor( -3200  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -3200  )   
    elif objective_function=="WeldedBeam.png":
        Current_BEST = torch.tensor( -35  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -35   )
    elif objective_function=="Car.png":
        Current_BEST = torch.tensor( -35  )  # Some arbitrary very small number
        Prev_BEST = torch.tensor( -35   )

    # Initial random samples
    # print(objective_functions)
    trained_X = torch.rand(20, objective_functions[objective_function]['dim'])

    # Scale it to the domain of interest using the selected function
    # print(objective_function)
    X_Scaled = objective_functions[objective_function]['scaling'](trained_X)

    # Get the constraints and objective
    trained_gx, trained_Y = objective_functions[objective_function]['function'](X_Scaled)

    # Convergence list to store best values
    convergence = []
    time_conv = []

    START_TIME = time.time()


# with gr.Progress(track_tqdm=True) as progress:


    # Optimization Loop
    for ii in progress.tqdm(range(iteration_input)):  # Example with 100 iterations

        # (0) Get the updated data for this iteration
        X_scaled = objective_functions[objective_function]['scaling'](trained_X)
        trained_gx, trained_Y = objective_functions[objective_function]['function'](X_scaled)

        # (1) Randomly sample Xpen 
        X_pen = torch.rand(1000,trained_X.shape[1])

        # (2) PFN inference phase with EI
        default_model = 'final_models/model_hebo_morebudget_9_unused_features_3.pt'
        
        ei, p_feas = Rosen_PFN_Parallel(default_model,
                                           trained_X, 
                                           trained_Y, 
                                           trained_gx,
                                           X_pen,
                                           'power',
                                           'ei'
                                          )

        # Calculating CEI
        CEI = ei
        for jj in range(p_feas.shape[1]):
            CEI = CEI*p_feas[:,jj]

        # (4) Get the next search value
        rec_idx = torch.argmax(CEI)
        best_candidate = X_pen[rec_idx,:].unsqueeze(0)

        # (5) Append the next search point
        trained_X = torch.cat([trained_X, best_candidate])


        ################################################################################
        # This is just for visualizing the best value. 
        # This section can be remove for pure optimization purpose
        Current_X = objective_functions[objective_function]['scaling'](trained_X)
        Current_GX, Current_Y = objective_functions[objective_function]['function'](Current_X)
        if ((Current_GX<=0).all(dim=1)).any():
            Current_BEST = torch.max(Current_Y[(Current_GX<=0).all(dim=1)])
        else:
            Current_BEST = Prev_BEST
        ################################################################################
        
        # (ii) Convergence tracking (assuming the best Y is to be maximized)
        # if Current_BEST != -1e10:
        # print(Current_BEST)
        # print(convergence)
        convergence.append(Current_BEST.abs())
        time_conv.append(time.time() - START_TIME)

    # Timing
    END_TIME = time.time()
    TOTAL_TIME = END_TIME - START_TIME
    
    # Website visualization
    # (i) Radar chart for trained_X
    radar_chart = None
    # radar_chart = create_radar_chart(X_scaled)
    # (ii) Convergence tracking (assuming the best Y is to be maximized)
    convergence_plot = create_convergence_plot(objective_function, iteration_input, 
                                               time_conv, 
                                               convergence, TOTAL_TIME)


    return convergence_plot
    # return radar_chart, convergence_plot









def create_radar_chart(X_scaled):
    fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
    labels = [f'x{i+1}' for i in range(X_scaled.shape[1])]
    values = X_scaled.mean(dim=0).numpy()
    
    num_vars = len(labels)
    angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
    values = np.concatenate((values, [values[0]]))
    angles += angles[:1]

    ax.fill(angles, values, color='green', alpha=0.25)
    ax.plot(angles, values, color='green', linewidth=2)
    ax.set_yticklabels([])
    ax.set_xticks(angles[:-1])
    # ax.set_xticklabels(labels)
    ax.set_xticklabels([f'{label}\n({value:.2f})' for label, value in zip(labels, values[:-1])])  # Show values
    ax.set_title("Selected Design", size=15, color='black', y=1.1)
    
    plt.close(fig)
    return fig







def create_convergence_plot(objective_function, iteration_input, time_conv, convergence, TOTAL_TIME):
    fig, ax = plt.subplots()
    
    # Realtime optimization data
    ax.plot(time_conv, convergence, '^-', label='PFN-CBO (Realtime)' )

    # Stored GP data
    if objective_function=="CantileverBeam.png":
        GP_TIME = torch.load('CantileverBeam_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('CantileverBeam_CEI_Avg_Obj.pt')
        
    elif objective_function=="CompressionSpring.png":
        GP_TIME = torch.load('CompressionSpring_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('CompressionSpring_CEI_Avg_Obj.pt')

    elif objective_function=="HeatExchanger.png":
        GP_TIME = torch.load('HeatExchanger_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('HeatExchanger_CEI_Avg_Obj.pt')
        
    elif objective_function=="ThreeTruss.png":
        GP_TIME = torch.load('ThreeTruss_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('ThreeTruss_CEI_Avg_Obj.pt')
        
    elif objective_function=="Reinforcement.png":
        GP_TIME = torch.load('ReinforcedConcreteBeam_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('ReinforcedConcreteBeam_CEI_Avg_Obj.pt')
        
    elif objective_function=="PressureVessel.png":
        GP_TIME = torch.load('PressureVessel_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('PressureVessel_CEI_Avg_Obj.pt')
        
    elif objective_function=="SpeedReducer.png":
        GP_TIME = torch.load('SpeedReducer_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('SpeedReducer_CEI_Avg_Obj.pt')
        
    elif objective_function=="WeldedBeam.png":
        GP_TIME = torch.load('WeldedBeam_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('WeldedBeam_CEI_Avg_Obj.pt')  

    elif objective_function=="Car.png":
        GP_TIME = torch.load('Car_CEI_Avg_Time.pt')
        GP_OBJ = torch.load('Car_CEI_Avg_Obj.pt')    
        
    # Plot GP data    
    ax.plot(GP_TIME[:iteration_input], GP_OBJ[:iteration_input], '^-', label='GP-CBO (Data)' )

    
    ax.set_xlabel('Time (seconds)')
    ax.set_ylabel('Objective Value (Minimization)')
    ax.set_title('Convergence Plot for {t} iterations'.format(t=iteration_input))
    # ax.legend()

    if objective_function=="CantileverBeam.png":
        ax.axhline(y=50000, color='red', linestyle='--', label='Optimal Value')

    elif objective_function=="CompressionSpring.png":
        ax.axhline(y=0, color='red', linestyle='--', label='Optimal Value')

    elif objective_function=="HeatExchanger.png":
        ax.axhline(y=4700, color='red', linestyle='--', label='Optimal Value')
        
    elif objective_function=="ThreeTruss.png":
        ax.axhline(y=262, color='red', linestyle='--', label='Optimal Value')
        
    elif objective_function=="Reinforcement.png":
        ax.axhline(y=355, color='red', linestyle='--', label='Optimal Value')
        
    elif objective_function=="PressureVessel.png":
        ax.axhline(y=5000, color='red', linestyle='--', label='Optimal Value')
        
    elif objective_function=="SpeedReducer.png":
        ax.axhline(y=2650, color='red', linestyle='--', label='Optimal Value')
        
    elif objective_function=="WeldedBeam.png":
        ax.axhline(y=3.3, color='red', linestyle='--', label='Optimal Value')  

    elif objective_function=="Car.png":
        ax.axhline(y=25, color='red', linestyle='--', label='Optimal Value')  

    
    ax.legend(loc='best')
    # ax.legend(loc='lower left')
        

    # Add text to the top right corner of the plot
    if len(convergence) == 0:
        ax.text(0.5, 0.5, 'No Feasible Design Found', transform=ax.transAxes, fontsize=12,
                verticalalignment='top', horizontalalignment='right')
        
    
    plt.close(fig)
    return fig






# Define available objective functions
objective_functions = {
    # "ThreeTruss.png": {"image": "ThreeTruss.png", 
    #                     "function": ThreeTruss, 
    #                     "scaling": ThreeTruss_Scaling, 
    #                     "dim": 2},
    "CompressionSpring.png": {"image": "CompressionSpring.png", 
                               "function": CompressionSpring, 
                               "scaling": CompressionSpring_Scaling, 
                               "dim": 3},
    "Reinforcement.png": {"image": "Reinforcement.png", "function": ReinforcedConcreteBeam, "scaling": ReinforcedConcreteBeam_Scaling, "dim": 3},
    "PressureVessel.png": {"image": "PressureVessel.png", "function": PressureVessel, "scaling": PressureVessel_Scaling, "dim": 4},
    "SpeedReducer.png": {"image": "SpeedReducer.png", "function": SpeedReducer, "scaling": SpeedReducer_Scaling, "dim": 7},
    "WeldedBeam.png": {"image": "WeldedBeam.png", "function": WeldedBeam, "scaling": WeldedBeam_Scaling, "dim": 4},
    "HeatExchanger.png": {"image": "HeatExchanger.png", "function": HeatExchanger, "scaling": HeatExchanger_Scaling, "dim": 8},
    "CantileverBeam.png": {"image": "CantileverBeam.png", "function": CantileverBeam, "scaling": CantileverBeam_Scaling, "dim": 10},
    "Car.png": {"image": "Car.png", "function": Car, "scaling": Car_Scaling, "dim": 11},
}
























# Extract just the image paths for the gallery
image_paths = [key for key in objective_functions]


def submit_action(objective_function_choices, iteration_input):
    # print(iteration_input)
    # print(len(objective_function_choices))
    # print(objective_functions[objective_function_choices]['function'])
    if len(objective_function_choices)>0:
        selected_function = objective_functions[objective_function_choices]['function']
        return  optimize(objective_function_choices, iteration_input)
    return None

# Function to clear the output
def clear_output():
    # print(gallery.selected_index)
    
    return gr.update(value=[], selected=None),  None, 15, gr.Markdown(""), 'Formulation_default.png'

def reset_gallery():
    return gr.update(value=image_paths)


with gr.Blocks() as demo:
    # Centered Title and Description using gr.HTML
    gr.HTML(
        """
        <div style="text-align: center;">
            <p style="text-align: center; font-size:30px;"><b>
            Constrained Bayesian Optimization with Pre-trained Transformers
            </b></p>
            
            <p style="text-align: center; font-size:18px;"><b>
            Paper: <a href="https://arxiv.org/abs/2404.04495">
            Fast and Accurate Bayesian Optimization with Pre-trained Transformers for Constrained Engineering Problems</a> 
            </b></p>

            <p style="text-align: left;font-size:18px;">
            Explore our interactive demo that uses PFN (Prior-Data Fitted Networks) for solving constrained Bayesian optimization problems! 
            </p>
            
            <p style="text-align: left;font-size:24px;"><b>
	    Get Started:
	    </b> </p>


            <p style="text-align: left;font-size:18px;">
             <ol style="text-align: left;font-size:18px;text-indent: 30px;">
              <li> <b>Select a Problem:</b> Click on an image from the problem gallery to choose your objective function. </li>
              <li> <b>Set Iterations:</b> Adjust the slider to set the number of iterations for the optimization process. </li>
              <li> <b>Run Optimization:</b> Click "Submit" to start the optimization. Use "Clear" if you need to reselect your parameters. </li> 
            </ol> 
            </p>

            
            
            

        </div>
        """
    )
    
    gr.HTML(
    
            	"""
            	    <p style="text-align: left;font-size:24px;"><b>
		    Result Display:
		    </b> </p>
		    
		    <p style="text-align: left;font-size:18px;">
		    <ol style="text-align: left;font-size:18px;text-indent: 30px;">
		    <li> <b>Panel Display:</b> Shows the problem formulation and the optimization results. </li>
		    <li> <b>Convergence Plot:</b> Visualizes the best observed objective against the algorithm's runtime over the chosen iterations. </li>
		    	<ul>
		    	<li> <b>PFN-CBO:</b> Displays results from real-time optimization. </li>
		    	<li> <b>GP-CBO:</b> Provides pre-computed data from our past experiments, as GP real-time runs are impractical for a demo. </li>
		    	</ul>
		    </ol> 
		    </p>
            	"""
            )

    
    with gr.Row():
        
        
        with gr.Column(variant='compact'):
            # gr.Markdown("# Inputs: ")
            
            with gr.Row():
                gr.Markdown("## Select a problem (objective): ")
                img_key = gr.Markdown(value="", visible=False)
            
            gallery = gr.Gallery(value=image_paths, label="Objectives", 
                                 # height = 450, 
                                 object_fit='contain',
                                 columns=3, rows=3, elem_id="gallery")
            
            gr.Markdown("## Enter iteration Number: ")
            iteration_input = gr.Slider(label="Iterations:", minimum=15, maximum=50, step=1, value=15)
        

            # Row for the Clear and Submit buttons
            with gr.Row():
                clear_button = gr.Button("Clear")
                submit_button = gr.Button("Submit", variant="primary")

        with gr.Column():
            # gr.Markdown("# Outputs: ")
            gr.Markdown("""
		        ## Convergence Plot: 
		        """)
            
            convergence_plot = gr.Plot(label="Convergence Plot")
            

            gr.Markdown("")
            gr.Markdown("## Problem formulation: ")
            formulation = gr.Image(value='Formulation_default.png', label="Eq")
            
            



    def handle_select(evt: gr.SelectData):
        selected_image = evt.value
        key = evt.value['image']['orig_name']

        if key=="CantileverBeam.png":
            formulation = 'Cantilever_formulation.png'
    
        elif key=="CompressionSpring.png":
            formulation = 'Compressed_Formulation.png'
    
        elif key=="HeatExchanger.png":
            formulation = 'Heat_Formulation.png'
            
        elif key=="Reinforcement.png":
            formulation = 'Reinforce_Formulation.png'
            
        elif key=="PressureVessel.png":
            formulation = 'Pressure_Formulation.png'
            
        elif key=="SpeedReducer.png":
            formulation = 'Speed_Formulation.png'
            
        elif key=="WeldedBeam.png":
            formulation = 'Welded_Formulation.png'  
    
        elif key=="Car.png":
            formulation = 'Car_Formulation_2.png'


        
        # formulation = 'Test_formulation.png'
        # print('here')
        # print(key)

        return key, formulation
        
    gallery.select(fn=handle_select, inputs=None, outputs=[img_key, formulation])


    
    submit_button.click(
        submit_action,
        inputs=[img_key, iteration_input],
        # outputs= [radar_plot, convergence_plot],
        outputs= convergence_plot,
        
        # progress=True  # Enable progress tracking
        
    )

    clear_button.click(
        clear_output,
        inputs=None,
        outputs=[gallery, convergence_plot, iteration_input, img_key, formulation]
    ).then(
        # Step 2: Reset the gallery to the original list
        reset_gallery,
        inputs=None,
        outputs=gallery
    )

    

demo.launch(share=True)