File size: 8,441 Bytes
2b49482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import argparse
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Circle, Rectangle
from matplotlib.collections import PatchCollection
from PIL import Image
import numpy as np
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
import math
import cv2
def scale_bounding_box(box, scale_factor=1.2):
# Extracting coordinates
top_left_x, top_left_y, bottom_right_x, bottom_right_y = box
# Calculating new width and height
width = bottom_right_x - top_left_x
height = bottom_right_y - top_left_y
# Scaling width and height
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# Calculating new coordinates
new_top_left_x = top_left_x - int((new_width - width) / 2)
new_top_left_y = top_left_y - int((new_height - height) / 2)
new_bottom_right_x = new_top_left_x + new_width
new_bottom_right_y = new_top_left_y + new_height
# Returning the scaled bounding box
return [new_top_left_x, new_top_left_y, new_bottom_right_x, new_bottom_right_y]
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def bbox_and_angle_to_polygon(x1, y1, x2, y2, a):
# Calculate center coordinates
x_ctr = (x1 + x2) / 2
y_ctr = (y1 + y2) / 2
# Calculate width and height
w = abs(x2 - x1)
h = abs(y2 - y1)
# Calculate the angle in radians
angle_rad = math.radians(a)
# Calculate coordinates of the four corners of the rotated bounding box
cos_a = math.cos(angle_rad)
sin_a = math.sin(angle_rad)
x1_rot = cos_a * (-w / 2) - sin_a * (-h / 2) + x_ctr
y1_rot = sin_a * (-w / 2) + cos_a * (-h / 2) + y_ctr
x2_rot = cos_a * (w / 2) - sin_a * (-h / 2) + x_ctr
y2_rot = sin_a * (w / 2) + cos_a * (-h / 2) + y_ctr
x3_rot = cos_a * (w / 2) - sin_a * (h / 2) + x_ctr
y3_rot = sin_a * (w / 2) + cos_a * (h / 2) + y_ctr
x4_rot = cos_a * (-w / 2) - sin_a * (h / 2) + x_ctr
y4_rot = sin_a * (-w / 2) + cos_a * (h / 2) + y_ctr
# Return the polygon coordinates
polygon_coords = np.array((x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot))
return polygon_coords
def main(args):
# Model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
image = load_image(args.image_file)
# Similar operation in model_worker.py
image_tensor = process_images([image], image_processor, args)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
while True:
try:
inp = input(f"{roles[0]}: ")
except EOFError:
inp = ""
if not inp:
print("exit...")
break
print(f"{roles[1]}: ", end="")
if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
import pdb;pdb.set_trace()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=False,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria])
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
conv.messages[-1][-1] = outputs
# bboxes=[]
# print(inp)
# # if ('[refer]') or ("[grounding]") in inp:
# output=outputs.replace('</s>','')
# print(output)
# # import pdb;pdb.set_trace()
# bboxes = np.array([int(x) for y in output.replace("|", "").split("}") for x in y.replace("><", ",").replace(">", "").replace("<", "").replace("}", "").replace("{", "").split(',') if x !=""]).astype(np.float32)
# remainder = len(bboxes)%5
# if remainder >0:
# bboxes = bboxes[:-remainder]
# # bboxes[1]=100-bboxes[1]
# # bboxes=bboxes
# # scaled_bbox=scale_bounding_box(bboxes[:-1], scale_factor=1.3)
# # bboxes=scaled_bbox.append(bboxes[-1])
# # bboxes = bboxes.reshape(-1, 5)
# bboxes=bboxes.tolist()
# bboxes=[int(bbox*5.04) for bbox in bboxes]
# bboxes = np.array([bbox_and_angle_to_polygon(bboxes[0],bboxes[1],bboxes[2],bboxes[3],bboxes[4])])
# # print(bboxes)
# bboxes=bboxes.reshape(4,2)
# image = cv2.imread(args.image_file)
# # print(image.shape)
# image=cv2.resize(image,(504,504))
# plt.imshow(image)
# # import pdb;pdb.set_trace()
# polygons=[Polygon(bboxes)]
# plt.axis('off')
# ax = plt.gca()
# ax.set_autoscale_on(False)
# p = PatchCollection(polygons, facecolors='none', edgecolors=[(0,255,0)], linewidths=2)
# ax.add_collection(p)
# # print('hello')
# plt.savefig('/share/data/drive_3/kartik/LLaVA/output_images/output.jpg')
if args.debug:
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
args = parser.parse_args()
main(args)
|