File size: 7,182 Bytes
2b49482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import torch.nn as nn
import math
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig


class CLIPVisionTower(nn.Module):
    def clip_interpolate_embeddings(self, image_size=600, patch_size= 14):
        """This function helps interpolating positional embeddings during checkpoint loading,
        especially when you want to apply a pre-trained model on images with different resolution.
 
        Args:
            image_size (int): Image size of the new model.
            patch_size (int): Patch size of the new model.
            model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model.
            interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
            reset_heads (bool): If true, not copying the state of heads. Default: False.
 
        Returns:
            OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model.
        """
        # Shape of pos_embedding is (1, seq_length, hidden_dim)
        state_dict = self.vision_tower.vision_model.embeddings.position_embedding.state_dict()
        pos_embedding = state_dict['weight']
        pos_embedding = pos_embedding.unsqueeze(0)
        n, seq_length, hidden_dim = pos_embedding.shape
        if n != 1:
            raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")
 
        new_seq_length = (image_size // patch_size) ** 2 + 1
 
        # Need to interpolate the weights for the position embedding.
        # We do this by reshaping the positions embeddings to a 2d grid, performing
        # an interpolation in the (h, w) space and then reshaping back to a 1d grid.
        if new_seq_length != seq_length:
            # The class token embedding shouldn't be interpolated so we split it up.
            seq_length -= 1
            new_seq_length -= 1
            pos_embedding_token = pos_embedding[:, :1, :]
            pos_embedding_img = pos_embedding[:, 1:, :]
 
            # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
            pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
            seq_length_1d = int(math.sqrt(seq_length))
            torch._assert(seq_length_1d * seq_length_1d == seq_length, "seq_length is not a perfect square!")
 
            # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
            pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
            new_seq_length_1d = image_size // patch_size
 
            # Perform interpolation.
            # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
            new_pos_embedding_img = nn.functional.interpolate(
                pos_embedding_img,
                size=new_seq_length_1d,
                mode='bicubic',
                align_corners=True,
            )
 
            # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
            new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)
 
            # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
            new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
            new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)[0]
            state_dict['weight'] = new_pos_embedding
            self.vision_tower.vision_model.embeddings.position_embedding = nn.Embedding(new_seq_length+1, hidden_dim)
            self.vision_tower.vision_model.embeddings.position_embedding.load_state_dict(state_dict)
            self.vision_tower.vision_model.embeddings.image_size = image_size
            self.vision_tower.vision_model.embeddings.patch_size = patch_size
            self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_seq_length+1).expand((1, -1))
            
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        if not delay_load:
            self.load_model()
        else:
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
            self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
            self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
            self.vision_tower.requires_grad_(False)
            self.clip_interpolate_embeddings(image_size=504, patch_size=14)

    def load_model(self):
        self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
        self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
        self.vision_tower.requires_grad_(False)
        self.clip_interpolate_embeddings(image_size=504, patch_size=14)

        self.is_loaded = True
        # print(self.is_loaded)

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                # print(image.shape)
                # import pdb; pdb.set_trace()
                image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                # print(image_features.shape)
                
                image_features.append(image_feature)
        else:
            # print(images.shape)
            # import pdb; pdb.set_trace()
            image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)
            # print(image_features.shape)
            

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2