Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
# import gradio as gr
|
2 |
# import torch
|
3 |
|
@@ -22,13 +23,152 @@
|
|
22 |
|
23 |
import gradio as gr
|
24 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Create Gradio interfaces for different modes
|
34 |
img_interface = gr.Interface(
|
|
|
1 |
+
# old code
|
2 |
# import gradio as gr
|
3 |
# import torch
|
4 |
|
|
|
23 |
|
24 |
import gradio as gr
|
25 |
import torch
|
26 |
+
import cv2
|
27 |
+
# from IPython.display import clear_output
|
28 |
+
# import os, urllib.request
|
29 |
+
# import subprocess
|
30 |
+
# from roboflow import Roboflow
|
31 |
+
# import json
|
32 |
+
# from time import sleep
|
33 |
+
# from PIL import Image, ImageDraw
|
34 |
+
# import io
|
35 |
+
# import base64
|
36 |
+
# import requests
|
37 |
+
# from os.path import exists
|
38 |
+
# import sys, re, glob
|
39 |
|
40 |
+
# model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
|
41 |
+
# rf = Roboflow(api_key="affmrRA3zyr34kAQF3sJ")
|
42 |
+
# project = rf.workspace().project("ecosmart-pxc0t")
|
43 |
+
# dataset = project.version(4).model
|
44 |
+
|
45 |
+
# # Define the face detector function
|
46 |
+
# def detect_image(image):
|
47 |
+
# results = model(image)
|
48 |
+
|
49 |
+
# return results.render()[0]
|
50 |
+
|
51 |
+
# def detect_video(video):
|
52 |
+
# HOME = os.path.expanduser("~")
|
53 |
+
# pathDoneCMD = f'{HOME}/doneCMD.sh'
|
54 |
+
# if not os.path.exists(f"{HOME}/.ipython/ttmg.py"):
|
55 |
+
# hCode = "https://raw.githubusercontent.com/yunooooo/gcct/master/res/ttmg.py"
|
56 |
+
# urllib.request.urlretrieve(hCode, f"{HOME}/.ipython/ttmg.py")
|
57 |
+
|
58 |
+
# from ttmg import (
|
59 |
+
# loadingAn,
|
60 |
+
# textAn,
|
61 |
+
# )
|
62 |
+
|
63 |
+
# os.chdir("/content/")
|
64 |
+
# os.makedirs("videos_to_infer", exist_ok=True)
|
65 |
+
# os.makedirs("inferred_videos", exist_ok=True)
|
66 |
+
# os.chdir("videos_to_infer")
|
67 |
+
# os.environ['inputFile'] = video.name
|
68 |
+
# command = ['ffmpeg', '-hide_banner', '-loglevel', 'error', '-i', input_file, '-vf', 'fps=2', output_pattern]
|
69 |
+
# subprocess.run(command)
|
70 |
+
|
71 |
+
# subprocess.run(['pip', 'install', 'roboflow'])
|
72 |
+
# install_roboflow()
|
73 |
+
# model = version.model
|
74 |
+
# print(model)
|
75 |
+
|
76 |
+
# file_path = "/content/videos_to_infer/"
|
77 |
+
# extention = ".png"
|
78 |
+
# globbed_files = sorted(glob.glob(file_path + '*' + extention))
|
79 |
+
# print(globbed_files)
|
80 |
+
# for image in globbed_files:
|
81 |
+
# # INFERENCE
|
82 |
+
# predictions = model.predict(image).json()['predictions']
|
83 |
+
# newly_rendered_image = Image.open(image)
|
84 |
+
|
85 |
+
# # RENDER
|
86 |
+
# # for each detection, create a crop and convert into CLIP encoding
|
87 |
+
# print(predictions)
|
88 |
+
# for prediction in predictions:
|
89 |
+
# # rip bounding box coordinates from current detection
|
90 |
+
# # note: infer returns center points of box as (x,y) and width, height
|
91 |
+
# # ----- but pillow crop requires the top left and bottom right points to crop
|
92 |
+
# x0 = prediction['x'] - prediction['width'] / 2
|
93 |
+
# x1 = prediction['x'] + prediction['width'] / 2
|
94 |
+
# y0 = prediction['y'] - prediction['height'] / 2
|
95 |
+
# y1 = prediction['y'] + prediction['height'] / 2
|
96 |
+
# box = (x0, y0, x1, y1)
|
97 |
+
|
98 |
+
# newly_rendered_image = draw_boxes(box, x0, y0, newly_rendered_image, prediction['class'])
|
99 |
+
|
100 |
+
# # WRITE
|
101 |
+
# save_with_bbox_renders(newly_rendered_image)
|
102 |
+
|
103 |
+
# # Run ffmpeg command
|
104 |
+
# subprocess.run(['ffmpeg', '-r', '8', '-s', '1920x1080', '-i', '/content/inferred_videos/YOUR_VIDEO_FILE_out%04d.png', '-vcodec', 'libx264', '-crf', '25', '-pix_fmt', 'yuv420p', 'test.mp4'])
|
105 |
+
# # Call the function to execute the commands
|
106 |
+
# execute_commands()
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
# def draw_boxes(box, x0, y0, img, class_name):
|
111 |
+
# bbox = ImageDraw.Draw(img)
|
112 |
+
|
113 |
+
# bbox.rectangle(box, outline =color_map[class_name], width=5)
|
114 |
+
# bbox.text((x0, y0), class_name, fill='black', anchor='mm')
|
115 |
+
|
116 |
+
# return img
|
117 |
+
|
118 |
+
# def save_with_bbox_renders(img):
|
119 |
+
# file_name = os.path.basename(img.filename)
|
120 |
+
# img.save('/content/inferred_videos/' + file_name)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
# loadingAn(name="lds")
|
125 |
+
# textAn("Installing Dependencies...", ty='twg')
|
126 |
+
# os.system('pip install git+git://github.com/AWConant/jikanpy.git')
|
127 |
+
# os.system('add-apt-repository -y ppa:jonathonf/ffmpeg-4')
|
128 |
+
# os.system('apt-get update')
|
129 |
+
# os.system('apt install mediainfo')
|
130 |
+
# os.system('apt-get install ffmpeg')
|
131 |
+
# clear_output()
|
132 |
+
# print('Installation finished.')
|
133 |
+
|
134 |
+
|
135 |
+
def detect_video(video):
|
136 |
+
video = cv2.VideoCapture(video_path)
|
137 |
+
|
138 |
+
frame_count = 0
|
139 |
+
while True:
|
140 |
+
|
141 |
+
success, frame = video.read()
|
142 |
+
if not success:
|
143 |
+
break
|
144 |
+
frame = model.predict();
|
145 |
+
frame_output_path = f'frame_{frame_count}.jpg' # Replace with your desired output path
|
146 |
+
cv2.imwrite(frame_output_path, frame)
|
147 |
+
|
148 |
+
frame_count += 1
|
149 |
+
|
150 |
+
video.release()
|
151 |
+
cv2.destroyAllWindows()
|
152 |
|
153 |
+
frame_rate = 30 # Adjust as needed
|
154 |
+
|
155 |
+
image_dir = 'path_to_image_directory' # Replace with the directory containing the image files
|
156 |
+
image_files = sorted(os.listdir(image_dir))
|
157 |
+
|
158 |
+
image_path = os.path.join(image_dir, image_files[0])
|
159 |
+
frame = cv2.imread(image_path)
|
160 |
+
height, width, _ = frame.shape
|
161 |
+
|
162 |
+
video_output_path = 'output_video.mp4' # Replace with your desired output video path
|
163 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can change the codec as needed
|
164 |
+
video_writer = cv2.VideoWriter(video_output_path, fourcc, frame_rate, (width, height))
|
165 |
+
|
166 |
+
for image_file in image_files:
|
167 |
+
image_path = os.path.join(image_dir, image_file)
|
168 |
+
frame = cv2.imread(image_path)
|
169 |
+
video_writer.write(frame)
|
170 |
+
|
171 |
+
video_writer.release()
|
172 |
|
173 |
# Create Gradio interfaces for different modes
|
174 |
img_interface = gr.Interface(
|