rongguangw commited on
Commit
b1d9ae7
·
1 Parent(s): 2f755c8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -12
app.py CHANGED
@@ -10,16 +10,15 @@ description = """
10
 
11
  <!-- Provide a quick summary of the dataset. -->
12
 
13
- M-SYNTH is a synthetic digital mammography (DM) dataset with four breast fibroglandular density distributions imaged using Monte Carlo x-ray simulations with the publicly available [Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE)](https://github.com/DIDSR/VICTRE) toolkit.
14
 
15
  ## Dataset Details
16
 
17
  The dataset has the following characteristics:
18
 
19
- * Breast density: dense, heterogeneously dense, scattered, fatty
20
- * Mass radius (mm): 5.00, 7.00, 9.00
21
- * Mass density: 1.0, 1.06, 1.1 (ratio of radiodensity of the mass to that of fibroglandular tissue)
22
- * Relative dose: 20%, 40%, 60%, 80%, 100% of the clinically recommended dose for each density
23
 
24
  ## Dataset Download
25
 
@@ -35,13 +34,13 @@ wget https://john6688-neuro-synth.hf.space/file=dataset/synth_kde_white_female.c
35
  citation = """
36
  ## Citation
37
  ```
38
- @article{sizikova2023knowledge,
39
- title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
40
- author={Sizikova, Elena and Saharkhiz, Niloufar and Sharma, Diksha and Lago, Miguel and Sahiner, Berkman and Delfino, Jana G. and Badano, Aldo},
41
- journal={Advances in Neural Information Processing Systems},
42
  volume={},
43
  pages={},
44
- year={2023}
45
  }
46
  ```
47
  """
@@ -53,8 +52,7 @@ example_df = pd.read_csv(file_name)
53
 
54
  def infer(num_sample):
55
  num_sample = int(num_sample)
56
- #input = np.load("model/kde_white_female.npz", allow_pickle=True)['model'].item()
57
- input = np.load("model/kde_white_female.npz")['model'].item()
58
  kde, scaler, cols_names = input['model'], input['scaler'], input['columns']
59
 
60
  sample = kde.sample(num_sample, random_state=0)
 
10
 
11
  <!-- Provide a quick summary of the dataset. -->
12
 
13
+ Neuro-Synth is a synthetic neuroimaging dataset ...
14
 
15
  ## Dataset Details
16
 
17
  The dataset has the following characteristics:
18
 
19
+ *
20
+ *
21
+ *
 
22
 
23
  ## Dataset Download
24
 
 
34
  citation = """
35
  ## Citation
36
  ```
37
+ @article{,
38
+ title={},
39
+ author={},
40
+ journal={},
41
  volume={},
42
  pages={},
43
+ year={2024}
44
  }
45
  ```
46
  """
 
52
 
53
  def infer(num_sample):
54
  num_sample = int(num_sample)
55
+ input = np.load("model/kde_white_female.npz", allow_pickle=True)['model'].item()
 
56
  kde, scaler, cols_names = input['model'], input['scaler'], input['columns']
57
 
58
  sample = kde.sample(num_sample, random_state=0)