File size: 6,717 Bytes
fc9f4fe
 
 
 
51ef325
 
fc9f4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51ef325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5535935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from dotenv import load_dotenv
import os
# import openai
from openai import OpenAI
from models import FormDetails, TranslateDetails
from prompts import system_prompt_template, prompt, translate_system_prompt, translation_prompt
import base64
from io import BytesIO
import anthropic
import nest_asyncio
from llama_parse import LlamaParse

nest_asyncio.apply()
load_dotenv()

# set up parser
parser = LlamaParse(
    result_type="markdown"  # "markdown" and "text" are available
)

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')


# Function to encode the image
def encode_image(image):    
    buffer = BytesIO()
    # Save the image to the buffer in its format (e.g., PNG, JPEG)
    image.save(buffer, format=image.format)
    # Get the byte data
    image_bytes = buffer.getvalue()
    return base64.b64encode(image_bytes).decode("utf-8")

def get_text(image, filename, model, fields="ALL"):    
    # print(model)
    # Getting the base64 string
    base64_image = encode_image(image)
    # check if model name starts with gpt
    if model.startswith("gpt"):
        print("gpt")
        client = OpenAI(api_key = OPENAI_API_KEY)
        response = client.beta.chat.completions.parse(
            model=model,
            messages=[
                {
                    "role":"system",
                    "content":system_prompt_template.format(filename,FormDetails.schema_json())
                },
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt.format(fields),
                        },
                        {
                            "type": "image_url",
                            "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                        },
                    ],
                }
            ],
            response_format=FormDetails,
            temperature=0.0,
        )
        response = response.choices[0].message.content
    # check if model name starts with claude
    elif model.startswith("claude"):
        print("claude")
        client = anthropic.Anthropic()
        message = client.messages.create(
            model=model,
            max_tokens=1024,
            system= system_prompt_template.format(filename,FormDetails.schema_json()) + " In following Json format,class FormDetails(BaseModel):\nfields: List[str]\nvalues: List[str] ",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image",
                            "source": {
                                "type": "base64",
                                "media_type": "image/png",
                                "data": base64_image,
                            },
                        },
                        {
                            "type": "text",
                            "text": prompt.format(fields),
                        }
                    ],
                }
            ],
            temperature=0.0,
        )
        response = message.content[0].text

    # check if model name starts with llama_llm
    elif model.startswith("llama_llm"):
        print("llama_llm")
        # Ensure the image is in RGB mode (to handle RGBA images)
        if image.mode == "RGBA":
            image = image.convert("RGB")
        # save image to a file
        image.save("image.jpg")
        # parse the image
        text = parser.load_data("image.jpg")
        if model == "llama_llm_o":
            client = OpenAI(api_key = OPENAI_API_KEY)
            response = client.beta.chat.completions.parse(
                model="gpt-4o-mini",
                messages=[
                    {
                        "role":"system",
                        "content":system_prompt_template.format(filename,FormDetails.schema_json())
                    },
                    {
                        "role": "user",
                        "content": f"{prompt.format(fields)} \n Knowledge Base {text}"  
                    }
                ],
                response_format=FormDetails,
                temperature=0.0,
            )
            response = response.choices[0].message.content
        elif model == "llama_llm_d":
            #deepseek
            print("deepseek")
            client = OpenAI(api_key=os.getenv('DEEPSEEK_API_KEY'), base_url=os.getenv('DEEPSEEK_API_URL'))
            response = client.chat.completions.create(
                        model="deepseek-chat",
                        messages=[
                                    {
                                        "role":"system",
                                        "content":system_prompt_template.format(filename,FormDetails.schema_json())
                                    },
                                    {
                                        "role": "user",
                                        "content": f"{prompt.format(fields)} \n Knowledge Base {text}"  
                                    }
                                ],
                        stream=False,
                        response_format={
                                            'type': 'json_object'
                                        }
                    )
            response = response.choices[0].message.content
    # print(response)
    return response

def translate_text(text, target_language):
    # print("translating")
    client = OpenAI(api_key = OPENAI_API_KEY)
    # print("hi")
    response = client.beta.chat.completions.parse(
        model="gpt-4o",
        messages=[
                {
                    "role":"system",
                    "content":translate_system_prompt.format(target_language,TranslateDetails.schema_json())
                },
                {
                "role": "user",
                "content": translation_prompt.format(target_language,text)
                },
                ],

        response_format=TranslateDetails,
        temperature=0.0,
    )
    # print(response.choices[0].message.content)
    response = response.choices[0].message.content
    return response


def chat_text(system,query,history):
    client = OpenAI()
    
    completion = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {"role": "system", "content": f"Here is the text you have to answer based on this. Knowledge Base:-{system}. \n History: {history}"},
            {
                "role": "user",
                "content": query
            }
        ]
    )
    
    return completion.choices[0].message