File size: 6,700 Bytes
7d9b785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db740ce
7d9b785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from transformers import AutoProcessor, Llama4ForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image

def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is converted to a PIL Image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames <= 0 or fps <= 0:
        vidcap.release()
        return frames
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

MODEL_ID = "meta-llama/Llama-4-Scout-17B-16E-Instruct"  # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
"""model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to("cuda").eval()"""

model = Llama4ForConditionalGeneration.from_pretrained(
    MODEL_ID,
    attn_implementation="flex_attention",
    device_map="auto",
    torch_dtype=torch.bfloat16,
).to("cuda").eval()

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    if text.strip().lower().startswith("@video-infer"):
        # Remove the tag from the query.
        text = text[len("@video-infer"):].strip()
        if not files:
            gr.Error("Please upload a video file along with your @video-infer query.")
            return
        # Assume the first file is a video.
        video_path = files[0]
        frames = downsample_video(video_path)
        if not frames:
            gr.Error("Could not process video.")
            return
        # Build messages: start with the text prompt.
        messages = [
            {
                "role": "user",
                "content": [{"type": "text", "text": text}]
            }
        ]
        # Append each frame with a timestamp label.
        for image, timestamp in frames:
            messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
            messages[0]["content"].append({"type": "image", "image": image})
        # Collect only the images from the frames.
        video_images = [image for image, _ in frames]
        # Prepare the prompt.
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt],
            images=video_images,
            return_tensors="pt",
            padding=True,
        ).to("cuda")
        # Set up streaming generation.
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2.5VL Model")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []

    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")
        return
    if text == "" and images:
        gr.Error("Please input a text query along with the image(s).")
        return

    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ],
        }
    ]
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt],
        images=images if images else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    yield progress_bar_html("Processing with Qwen2.5VL Model")
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

examples = [
    [{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
    [{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
    [{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
    [{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **meta-llama/Llama-4-Scout-17B-16E-Instruct `@video-infer for video understanding`** (based on demo from here: https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL-7B-Instruct)",
    examples=examples,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

demo.launch(debug=True)