from fastapi import FastAPI, HTTPException from pydantic import BaseModel import torch import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer from torch_geometric.data import Data from torch_geometric.nn import GATConv from sklearn.metrics.pairwise import cosine_similarity # FastAPI App app = FastAPI() # Data and Model Initialization data = torch.load("graph_data.pt", map_location=torch.device("cpu")) # Corrected state dictionary for GATConv model original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu")) corrected_state_dict = {} for key, value in original_state_dict.items(): if "lin.weight" in key: corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value else: corrected_state_dict[key] = value # Define GATConv Model class ModeratelySimplifiedGATConvModel(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super().__init__() self.conv1 = GATConv(in_channels, hidden_channels, heads=2) self.dropout1 = torch.nn.Dropout(0.45) self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1) def forward(self, x, edge_index, edge_attr=None): x = self.conv1(x, edge_index, edge_attr) x = torch.relu(x) x = self.dropout1(x) x = self.conv2(x, edge_index, edge_attr) return x # Initialize GATConv model and BERT-based sentence transformer model gatconv_model = ModeratelySimplifiedGATConvModel( in_channels=data.x.shape[1], hidden_channels=32, out_channels=768 ) gatconv_model.load_state_dict(corrected_state_dict) model_bert = SentenceTransformer("all-mpnet-base-v2") # Ensure DataFrame is loaded properly df = pd.read_feather("EmbeddedCombined.feather") # Function to get most similar video and recommend top 10 based on GNN embeddings def get_similar_and_recommend(input_text): embeddings_matrix = np.array(df["embeddings"].tolist()) input_embedding = model_bert.encode([input_text])[0] similarities = cosine_similarity([input_embedding], embeddings_matrix)[0] most_similar_index = np.argmax(similarities) most_similar_video = { "title": df["title"].iloc[most_similar_index], "description": df["description"].iloc[most_similar_index], "similarity_score": similarities[most_similar_index], } # Function to recommend top 10 videos based on GNN embeddings def recommend_next_10_videos(given_video_index, all_video_embeddings): dot_products = [ torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu()) for i in range(all_video_embeddings.shape[0]) ] dot_products[given_video_index] = -float("inf") top_10_indices = np.argsort(dot_products)[::-1][:10] recommendations = [df["title"].iloc[idx] for idx in top_10_indices] return recommendations top_10_recommendations = recommend_next_10_videos( most_similar_index, gatconv_model(data.x, data.edge_index, data.edge_attr).cpu() ) return { "most_similar_video_title": most_similar_video["title"], "top_10_recommendations": top_10_recommendations, } # Define the endpoint for FastAPI to get video title and recommendations class UserInput(BaseModel): text: str # The string input from the user @app.post("/recommendations") def recommend_videos(user_input: UserInput): if not user_input.text: raise HTTPException(status_code=400, detail="Input text cannot be empty.") result = get_similar_and_recommend(user_input.text) return result