import gradio as gr import torch import pandas as pd import numpy as np from torch_geometric.data import Data from torch_geometric.nn import GATConv from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity # Define the GATConv model architecture class ModeratelySimplifiedGATConvModel(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super().__init__() self.conv1 = GATConv(in_channels, hidden_channels, heads=2) self.dropout1 = torch.nn.Dropout(0.45) self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1) def forward(self, x, edge_index, edge_attr=None): x = self.conv1(x, edge_index, edge_attr) x = torch.relu(x) x = self.dropout1(x) x = self.conv2(x, edge_index, edge_attr) return x # Load the dataset and the GATConv model data = torch.load("graph_data.pt", map_location=torch.device("cpu")) # Correct the state dictionary's key names original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu")) corrected_state_dict = {} for key, value in original_state_dict.items(): if "lin.weight" in key: corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value else: corrected_state_dict[key] = value # Initialize the GATConv model with the corrected state dictionary gatconv_model = ModeratelySimplifiedGATConvModel( in_channels=data.x.shape[1], hidden_channels=32, out_channels=768 ) gatconv_model.load_state_dict(corrected_state_dict) # Load the BERT-based sentence transformer model model_bert = SentenceTransformer("all-mpnet-base-v2") # Ensure the DataFrame is loaded properly try: df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip') except Exception as e: print(f"Error reading JSON file: {e}") # Generate GNN-based embeddings with torch.no_grad(): all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu() # Function to find the most similar video and recommend the top 10 based on GNN embeddings def get_similar_and_recommend(input_text): # Find the most similar video based on input text embeddings_matrix = np.array(df["embeddings"].tolist()) input_embedding = model_bert.encode([input_text])[0] similarities = cosine_similarity([input_embedding], embeddings_matrix)[0] most_similar_index = np.argmax(similarities) # Use unweighted scores for the most similar video # Get all features of the most similar video most_similar_video_features = df.iloc[most_similar_index].to_dict() # Get all features of the most similar video most_similar_video_features = df.iloc[most_similar_index].to_dict() # Remove the "embeddings" key from most_similar_video_features if "embeddings" in most_similar_video_features: del most_similar_video_features["embeddings"] if "text_for_embedding" in most_similar_video_features: del most_similar_video_features["text_for_embedding"] # Apply search context weight for GNN recommendations user_keywords = input_text.split() # Create a list of keywords from user input weight = 1.0 # Initial weight factor for keyword in user_keywords: if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords weight += 0.1 # Increase weight for each match # Recommend the top 10 videos based on GNN embeddings and weighted dot product def recommend_next_10_videos(given_video_index, all_video_embeddings, weight): dot_products = [ torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i]) * weight for i in range(all_video_embeddings.shape[0]) ] dot_products[given_video_index] = -float("inf") top_10_indices = np.argsort(dot_products)[[::-1][:10] return [df.iloc[idx].to_dict() for idx in top_10_indices] top_10_recommended_videos_features = recommend_next_10_videos( most_similar_index, all_video_embeddings, weight ) # Exclude unwanted features for recommended videos for recommended_video in top_10_recommended_videos_features: if "text_for_embedding" in recommended_video: del recommended_video["text_for_embedding"] if "embeddings" in recommended_video: del recommended_video["embeddings"] # Create the output JSON with the search context output = { "search_context": { "input_text": input_text, "weight": weight, # Weight applied to the GNN recommendations }, "most_similar_video": most_similar_video_features, "top_10_recommended_videos": top_10_recommended_videos_features, } return output # Update the Gradio interface to output JSON with search context for GNN recommendations interface = gr.Interface( fn=get_similar_and_recommend, inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"), outputs=gr.JSON(), title="Video Recommendation System with GNN-based Recommendations", description="Enter text to find the most similar video and get top 10 recommended videos with search context applied to GNN results.", ) interface.launch()