File size: 5,935 Bytes
47a0435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python

from __future__ import annotations

import argparse
import pathlib
import tarfile

import gradio as gr

from model import AppModel

DESCRIPTION = '''# ViTPose

This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).

Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)

'''
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose_video" />'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    return parser.parse_args()


def set_example_video(example: list) -> dict:
    return gr.Video.update(value=example[0])


def extract_tar() -> None:
    if pathlib.Path('mmdet_configs/configs').exists():
        return
    with tarfile.open('mmdet_configs/configs.tar') as f:
        f.extractall('mmdet_configs')


def main():
    args = parse_args()

    extract_tar()

    model = AppModel(device=args.device)

    with gr.Blocks(theme=args.theme, css='style.css') as demo:
        gr.Markdown(DESCRIPTION)

        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label='Input Video',
                                       format='mp4',
                                       elem_id='input_video')
                with gr.Group():
                    detector_name = gr.Dropdown(
                        list(model.det_model.MODEL_DICT.keys()),
                        value=model.det_model.model_name,
                        label='Detector')
                    pose_model_name = gr.Dropdown(
                        list(model.pose_model.MODEL_DICT.keys()),
                        value=model.pose_model.model_name,
                        label='Pose Model')
                    det_score_threshold = gr.Slider(
                        0,
                        1,
                        step=0.05,
                        value=0.5,
                        label='Box Score Threshold')
                    max_num_frames = gr.Slider(
                        1,
                        300,
                        step=1,
                        value=60,
                        label='Maximum Number of Frames')
                    predict_button = gr.Button(value='Predict')
                    pose_preds = gr.Variable()

                    paths = sorted(pathlib.Path('videos').rglob('*.mp4'))
                    example_videos = gr.Dataset(components=[input_video],
                                                samples=[[path.as_posix()]
                                                         for path in paths])

            with gr.Column():
                with gr.Group():
                    result = gr.Video(label='Result',
                                      format='mp4',
                                      elem_id='result')
                    vis_kpt_score_threshold = gr.Slider(
                        0,
                        1,
                        step=0.05,
                        value=0.3,
                        label='Visualization Score Threshold')
                    vis_dot_radius = gr.Slider(1,
                                               10,
                                               step=1,
                                               value=4,
                                               label='Dot Radius')
                    vis_line_thickness = gr.Slider(1,
                                                   10,
                                                   step=1,
                                                   value=2,
                                                   label='Line Thickness')
                    redraw_button = gr.Button(value='Redraw')

        gr.Markdown(FOOTER)

        detector_name.change(fn=model.det_model.set_model,
                             inputs=detector_name,
                             outputs=None)
        pose_model_name.change(fn=model.pose_model.set_model,
                               inputs=pose_model_name,
                               outputs=None)
        predict_button.click(fn=model.run,
                             inputs=[
                                 input_video,
                                 detector_name,
                                 pose_model_name,
                                 det_score_threshold,
                                 max_num_frames,
                                 vis_kpt_score_threshold,
                                 vis_dot_radius,
                                 vis_line_thickness,
                             ],
                             outputs=[
                                 result,
                                 pose_preds,
                             ])
        redraw_button.click(fn=model.visualize_pose_results,
                            inputs=[
                                input_video,
                                pose_preds,
                                vis_kpt_score_threshold,
                                vis_dot_radius,
                                vis_line_thickness,
                            ],
                            outputs=result)

        example_videos.click(fn=set_example_video,
                             inputs=example_videos,
                             outputs=input_video)

    demo.launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()