Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,876 Bytes
e70400c ece8c80 e70400c ece8c80 e70400c ece8c80 e70400c b9dd0a0 e70400c b9dd0a0 e70400c b9dd0a0 e70400c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Standard library imports
import os
import gradio as gr
import torch.nn.functional as F
import torch.nn as nn
# Local imports
from age_estimation.age_estimation import age_estimation
from detection.face_detection import face_detection
from detection.object_detection import object_detection
from utils.ui_utils import update_input_visibility
with gr.Blocks() as demo:
# Add a title to the interface
gr.Markdown("# Computer Vision Tools")
# Create a tab for face detection
with gr.Tab("Face Detection"):
# Input Method Selection
face_input_type = gr.Radio(
["Upload File", "Enter URL", "Enter Base64"],
label="Input Method",
value="Upload File", # Default selection
)
# Face Detection Method Selection
face_detection_method = gr.Radio(
["OpenCV", "dlib"],
label="Face Detection Method",
value="OpenCV", # Default selection
)
# Input Components (initially only file upload is visible)
with gr.Row():
face_img_upload = gr.Image(type="pil", label="Upload Image", visible=True)
face_url_input = gr.Textbox(
label="Enter Image URL", placeholder="e.g., https://...", visible=False
)
face_base64_input = gr.Textbox(
label="Enter Base64 String",
placeholder="Enter base64 string here...",
visible=False,
)
# Process Button
face_process_btn = gr.Button("Process Image")
# Output Component
face_image_output = gr.Image(label="Detected Faces")
# Link radio button change to visibility update function
face_input_type.change(
fn=update_input_visibility,
inputs=[face_input_type],
outputs=[face_img_upload, face_url_input, face_base64_input],
queue=False,
)
# Link process button to the face detection function
# The face_detection function will need to be updated to handle these inputs
face_process_btn.click(
fn=face_detection,
inputs=[
face_input_type,
face_img_upload,
face_url_input,
face_base64_input,
face_detection_method,
],
outputs=face_image_output,
)
# Create a tab for age estimation
with gr.Tab("Age Estimation"):
# Input Method Selection
age_input_type = gr.Radio(
["Upload File", "Enter URL", "Enter Base64"],
label="Input Method",
value="Upload File", # Default selection
)
# Input Components (initially only file upload is visible)
with gr.Row():
age_img_upload = gr.Image(type="pil", label="Upload Image", visible=True)
age_url_input = gr.Textbox(
label="Enter Image URL", placeholder="e.g., https://...", visible=False
)
age_base64_input = gr.Textbox(
label="Enter Base64 String",
placeholder="Enter base64 string here...",
visible=False,
)
# Process Button
age_process_btn = gr.Button("Estimate Age")
# Output Component
age_text_output = gr.Textbox(label="Estimated Age")
# Link radio button change to visibility update function
age_input_type.change(
fn=update_input_visibility,
inputs=[age_input_type],
outputs=[age_img_upload, age_url_input, age_base64_input],
queue=False,
)
# Link process button to the age estimation function
# The age_estimation function will need to be updated to handle these inputs
age_process_btn.click(
fn=age_estimation,
inputs=[age_input_type, age_img_upload, age_url_input, age_base64_input],
outputs=age_text_output,
)
# Create a tab for object detection
with gr.Tab("Object Detection"):
# Input Method Selection
obj_input_type = gr.Radio(
["Upload File", "Enter URL", "Enter Base64"],
label="Input Method",
value="Upload File", # Default selection
)
# Input Components (initially only file upload is visible)
with gr.Row():
obj_img_upload = gr.Image(type="pil", label="Upload Image", visible=True)
obj_url_input = gr.Textbox(
label="Enter Image URL", placeholder="e.g., https://...", visible=False
)
obj_base64_input = gr.Textbox(
label="Enter Base64 String",
placeholder="Enter base64 string here...",
visible=False,
)
# Process Button
obj_process_btn = gr.Button("Detect Objects")
# Output Component
obj_image_output = gr.Image(label="Detected Objects")
# Link radio button change to visibility update function
obj_input_type.change(
fn=update_input_visibility,
inputs=[obj_input_type],
outputs=[obj_img_upload, obj_url_input, obj_base64_input],
queue=False,
)
# Link process button to the object detection function
# The object_detection function will need to be updated to handle these inputs
obj_process_btn.click(
fn=object_detection,
inputs=[obj_input_type, obj_img_upload, obj_url_input, obj_base64_input],
outputs=obj_image_output,
)
# Launch the Gradio demo
port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
import sys
if "--server_port" in sys.argv:
port = int(sys.argv[sys.argv.index("--server_port") + 1])
demo.launch(server_port=port, ssr_mode=True, share=True)
|