Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,44 +4,60 @@ import numpy as np
|
|
4 |
import PIL.Image
|
5 |
from PIL import Image
|
6 |
import random
|
7 |
-
from diffusers import
|
8 |
-
from diffusers import
|
9 |
-
import cv2
|
10 |
import torch
|
11 |
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
|
|
14 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
15 |
"votepurchase/waiNSFWIllustrious_v110",
|
16 |
torch_dtype=torch.float16,
|
|
|
|
|
17 |
)
|
18 |
|
19 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
20 |
pipe.to(device)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1216
|
24 |
-
|
25 |
|
26 |
@spaces.GPU
|
27 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
28 |
-
|
|
|
|
|
|
|
29 |
if randomize_seed:
|
30 |
seed = random.randint(0, MAX_SEED)
|
31 |
|
32 |
-
generator = torch.Generator().manual_seed(seed)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
css = """
|
@@ -60,7 +76,7 @@ with gr.Blocks(css=css) as demo:
|
|
60 |
label="Prompt",
|
61 |
show_label=False,
|
62 |
max_lines=1,
|
63 |
-
placeholder="Enter your prompt",
|
64 |
container=False,
|
65 |
)
|
66 |
|
@@ -93,7 +109,7 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
minimum=256,
|
94 |
maximum=MAX_IMAGE_SIZE,
|
95 |
step=32,
|
96 |
-
value=1024
|
97 |
)
|
98 |
|
99 |
height = gr.Slider(
|
@@ -101,7 +117,7 @@ with gr.Blocks(css=css) as demo:
|
|
101 |
minimum=256,
|
102 |
maximum=MAX_IMAGE_SIZE,
|
103 |
step=32,
|
104 |
-
value=1024
|
105 |
)
|
106 |
|
107 |
with gr.Row():
|
@@ -121,7 +137,7 @@ with gr.Blocks(css=css) as demo:
|
|
121 |
value=28,
|
122 |
)
|
123 |
|
124 |
-
run_button.click(
|
125 |
fn=infer,
|
126 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
127 |
outputs=[result]
|
|
|
4 |
import PIL.Image
|
5 |
from PIL import Image
|
6 |
import random
|
7 |
+
from diffusers import StableDiffusionXLPipeline
|
8 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
|
|
9 |
import torch
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
+
# Make sure to use torch.float16 consistently throughout the pipeline
|
14 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
15 |
"votepurchase/waiNSFWIllustrious_v110",
|
16 |
torch_dtype=torch.float16,
|
17 |
+
variant="fp16", # Explicitly use fp16 variant
|
18 |
+
use_safetensors=True # Use safetensors if available
|
19 |
)
|
20 |
|
21 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
22 |
pipe.to(device)
|
23 |
|
24 |
+
# Force all components to use the same dtype
|
25 |
+
pipe.text_encoder.to(torch.float16)
|
26 |
+
pipe.text_encoder_2.to(torch.float16)
|
27 |
+
pipe.vae.to(torch.float16)
|
28 |
+
pipe.unet.to(torch.float16)
|
29 |
+
|
30 |
MAX_SEED = np.iinfo(np.int32).max
|
31 |
MAX_IMAGE_SIZE = 1216
|
|
|
32 |
|
33 |
@spaces.GPU
|
34 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
35 |
+
# Check and truncate prompt if too long (CLIP can only handle 77 tokens)
|
36 |
+
if len(prompt.split()) > 60: # Rough estimate to avoid exceeding token limit
|
37 |
+
print("Warning: Prompt may be too long and will be truncated by the model")
|
38 |
+
|
39 |
if randomize_seed:
|
40 |
seed = random.randint(0, MAX_SEED)
|
41 |
|
42 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
43 |
+
|
44 |
+
try:
|
45 |
+
output_image = pipe(
|
46 |
+
prompt=prompt,
|
47 |
+
negative_prompt=negative_prompt,
|
48 |
+
guidance_scale=guidance_scale,
|
49 |
+
num_inference_steps=num_inference_steps,
|
50 |
+
width=width,
|
51 |
+
height=height,
|
52 |
+
generator=generator
|
53 |
+
).images[0]
|
54 |
+
|
55 |
+
return output_image
|
56 |
+
except RuntimeError as e:
|
57 |
+
print(f"Error during generation: {e}")
|
58 |
+
# Return a blank image with error message
|
59 |
+
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
|
60 |
+
return error_img
|
61 |
|
62 |
|
63 |
css = """
|
|
|
76 |
label="Prompt",
|
77 |
show_label=False,
|
78 |
max_lines=1,
|
79 |
+
placeholder="Enter your prompt (keep it under 60 words for best results)",
|
80 |
container=False,
|
81 |
)
|
82 |
|
|
|
109 |
minimum=256,
|
110 |
maximum=MAX_IMAGE_SIZE,
|
111 |
step=32,
|
112 |
+
value=1024,
|
113 |
)
|
114 |
|
115 |
height = gr.Slider(
|
|
|
117 |
minimum=256,
|
118 |
maximum=MAX_IMAGE_SIZE,
|
119 |
step=32,
|
120 |
+
value=1024,
|
121 |
)
|
122 |
|
123 |
with gr.Row():
|
|
|
137 |
value=28,
|
138 |
)
|
139 |
|
140 |
+
run_button.click(
|
141 |
fn=infer,
|
142 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
outputs=[result]
|