File size: 6,567 Bytes
63c9177 0588a72 3ad05c5 d0d60f4 0588a72 280275c 7f94b06 0588a72 280275c 0588a72 079c63d 616220d 280275c 5ad9b18 616220d 280275c 5ad9b18 280275c 5ad9b18 0588a72 280275c 0588a72 de624eb 0588a72 280275c 0588a72 3ad05c5 0588a72 3ad05c5 280275c 3ad05c5 280275c 3ad05c5 280275c 3ad05c5 5ad9b18 280275c 5ad9b18 0588a72 616220d 5ad9b18 280275c 5ad9b18 616220d 280275c 5ad9b18 616220d 280275c 616220d 280275c 616220d 5ad9b18 616220d 995a0e5 280275c 0588a72 079c63d d0d60f4 079c63d 3ad05c5 280275c 88b9dfd 280275c 88b9dfd d0d60f4 939e16f d0d60f4 280275c d0d60f4 5ad9b18 280275c d0d60f4 280275c 616220d 0588a72 280275c 3ad05c5 aa05415 280275c 0588a72 5ad9b18 d0d60f4 5ad9b18 aa05415 5ad9b18 aa05415 5ad9b18 0588a72 280275c 0588a72 280275c 3ad05c5 5ad9b18 d0d60f4 5ad9b18 3ad05c5 5ad9b18 3ad05c5 5ad9b18 3ad05c5 280275c 3ad05c5 280275c 0588a72 5ad9b18 0588a72 d0d60f4 0588a72 280275c 0588a72 d0d60f4 3ad05c5 0588a72 280275c 2a08ae8 88b9dfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
import requests
import re
import os
# Load from environment or fallback to default
API_ENDPOINT = os.getenv("API_ENDPOINT")
API_TOKEN = os.getenv("API_TOKEN")
MODEL_ID = os.getenv("MODEL_ID", "none")
def get_ai_response(message, history):
"""Fetch AI response from the API using the modern messages format."""
messages = [{"role": "system", "content": "You are a helpful assistant."}]
for user_msg, ai_msg in history:
if ai_msg != "⏳ Thinking...":
# Clean HTML from AI messages to avoid nesting artifacts
clean_ai_msg = re.sub(r'<details>.*?</details>', '', ai_msg, flags=re.DOTALL)
clean_ai_msg = re.sub(r'<[^>]*>', '', clean_ai_msg)
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": clean_ai_msg})
# Add latest user message
messages.append({"role": "user", "content": message})
payload = {
"model": MODEL_ID,
"messages": messages,
"stream": False,
"max_tokens": 10000,
"temperature": 0.7
}
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
try:
response = requests.post(API_ENDPOINT, headers=headers, json=payload)
response.raise_for_status()
raw_response = response.json()["choices"][0]["message"]["content"]
html_response = convert_reasoning_to_collapsible(raw_response)
return html_response
except Exception as e:
return f"Error: {str(e)}"
def convert_reasoning_to_collapsible(text):
"""Convert <reasoning> tags into collapsible HTML elements."""
reasoning_pattern = re.compile(r'<reasoning>(.*?)</reasoning>', re.DOTALL)
def replace_with_collapsible(match):
reasoning_content = match.group(1).strip()
return (
f'<details>'
f'<summary><strong>See reasoning</strong></summary>'
f'<div class="reasoning-content">{reasoning_content}</div>'
f'</details>'
)
html_response = reasoning_pattern.sub(replace_with_collapsible, text)
html_response = re.sub(r'<sep>.*?</sep>', '', html_response, flags=re.DOTALL)
html_response = html_response.replace('<sep>', '').replace('</sep>', '')
return html_response
def add_user_message(message, history):
"""Add user message with a placeholder AI response ('⏳ Thinking...')."""
if history is None:
history = []
history.append((message, "⏳ Thinking..."))
return history, history
def generate_response_from_history(history):
"""Replace last '⏳ Thinking...' with real assistant response."""
if not history:
return history, history
last_user_message = history[-1][0]
api_history = []
for user_msg, ai_msg in history:
if ai_msg != "⏳ Thinking...":
clean_ai_msg = re.sub(r'<details>.*?</details>', '', ai_msg, flags=re.DOTALL)
clean_ai_msg = re.sub(r'<[^>]*>', '', clean_ai_msg)
api_history.append({"role": "user", "content": user_msg})
api_history.append({"role": "assistant", "content": clean_ai_msg})
api_history.append({"role": "user", "content": last_user_message})
ai_response = get_ai_response(last_user_message, api_history)
history[-1] = (last_user_message, ai_response)
return history, history
# CSS for dark mode + collapsible sections
custom_css = """
body { background-color: #1a1a1a; color: #ffffff; font-family: 'Arial', sans-serif; }
#chatbot { height: 80vh; background-color: #2d2d2d; border: 1px solid #404040; border-radius: 8px; }
input, button { background-color: #333333; color: #ffffff; border: 1px solid #404040; border-radius: 5px; }
button:hover { background-color: #404040; }
details { background-color: #333333; padding: 10px; margin: 5px 0; border-radius: 5px; }
summary { cursor: pointer; color: #70a9e6; }
.reasoning-content { padding: 10px; margin-top: 5px; background-color: #404040; border-radius: 5px; }
"""
# Set model name for UI title
model_display_name = MODEL_ID
# Gradio UI definition
with gr.Blocks(css=custom_css, title=model_display_name) as demo:
with gr.Column():
gr.Markdown("## nvidia-Llama-3_1-Nemotron-Ultra-253B-v1 Demo")
gr.Markdown("This is a demo of nvidia-Llama-3_1-Nemotron-Ultra-253B-v1")
chatbot = gr.Chatbot(elem_id="chatbot", render_markdown=False, bubble_full_width=True)
with gr.Row():
message = gr.Textbox(placeholder="Type your message...", show_label=False, container=False)
submit_btn = gr.Button("Send", size="lg")
clear_chat_btn = gr.Button("Clear Chat")
chat_state = gr.State([])
# JS to allow rendering HTML in the chat
js = """
function() {
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.addedNodes.length) {
document.querySelectorAll('#chatbot .message:not(.processed)').forEach(msg => {
msg.classList.add('processed');
const content = msg.querySelector('.content');
if (content) {
content.innerHTML = content.textContent;
}
});
}
});
});
const chatbot = document.getElementById('chatbot');
if (chatbot) {
observer.observe(chatbot, { childList: true, subtree: true });
}
return [];
}
"""
# Event: Send button clicked
submit_btn.click(
add_user_message,
[message, chat_state],
[chat_state, chatbot]
).then(
generate_response_from_history,
chat_state,
[chat_state, chatbot]
).then(
lambda: "", None, message # clear textbox
)
# Event: Pressing Enter key in Textbox
message.submit(
add_user_message,
[message, chat_state],
[chat_state, chatbot]
).then(
generate_response_from_history,
chat_state,
[chat_state, chatbot]
).then(
lambda: "", None, message
)
# Clear chat
clear_chat_btn.click(
lambda: ([], []),
None,
[chat_state, chatbot]
)
# Load JS on UI load
demo.load(
fn=lambda: None,
inputs=None,
outputs=None,
js=js
)
# Launch Gradio interface
demo.queue()
demo.launch() |