Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -17,15 +17,21 @@ import json
|
|
17 |
import re
|
18 |
from gradio_client import Client
|
19 |
from simple_salesforce import Salesforce, SalesforceLogin
|
|
|
20 |
|
21 |
|
22 |
# Define Pydantic model for incoming request body
|
23 |
class MessageRequest(BaseModel):
|
24 |
message: str
|
25 |
-
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
26 |
llm_client = InferenceClient(
|
27 |
model=repo_id,
|
28 |
-
token=os.getenv("HF_TOKEN")
|
29 |
)
|
30 |
|
31 |
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
@@ -70,13 +76,20 @@ app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
70 |
|
71 |
templates = Jinja2Templates(directory="static")
|
72 |
# Configure Llama index settings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
Settings.llm = HuggingFaceInferenceAPI(
|
74 |
-
model_name="
|
75 |
-
|
76 |
-
context_window=
|
77 |
-
token=os.getenv("HF_TOKEN"),
|
78 |
max_new_tokens=512,
|
79 |
-
generate_kwargs={"temperature": 0.1}
|
80 |
)
|
81 |
Settings.embed_model = HuggingFaceEmbedding(
|
82 |
model_name="BAAI/bge-small-en-v1.5"
|
|
|
17 |
import re
|
18 |
from gradio_client import Client
|
19 |
from simple_salesforce import Salesforce, SalesforceLogin
|
20 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
21 |
|
22 |
|
23 |
# Define Pydantic model for incoming request body
|
24 |
class MessageRequest(BaseModel):
|
25 |
message: str
|
26 |
+
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
27 |
+
# llm_client = InferenceClient(
|
28 |
+
# model=repo_id,
|
29 |
+
# token=os.getenv("HF_TOKEN"),
|
30 |
+
# )
|
31 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
32 |
llm_client = InferenceClient(
|
33 |
model=repo_id,
|
34 |
+
token=os.getenv("HF_TOKEN")
|
35 |
)
|
36 |
|
37 |
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
|
|
76 |
|
77 |
templates = Jinja2Templates(directory="static")
|
78 |
# Configure Llama index settings
|
79 |
+
# Settings.llm = HuggingFaceInferenceAPI(
|
80 |
+
# model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
81 |
+
# tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
82 |
+
# context_window=3000,
|
83 |
+
# token=os.getenv("HF_TOKEN"),
|
84 |
+
# max_new_tokens=512,
|
85 |
+
# generate_kwargs={"temperature": 0.1},
|
86 |
+
# )
|
87 |
Settings.llm = HuggingFaceInferenceAPI(
|
88 |
+
model_name="mistralai/Mistral-7B-Instruct-v0.1",
|
89 |
+
token=os.getenv("HF_TOKEN"), # Your Hugging Face API token
|
90 |
+
context_window=4096, # Mistral-7B’s context window
|
|
|
91 |
max_new_tokens=512,
|
92 |
+
generate_kwargs={"temperature": 0.1}
|
93 |
)
|
94 |
Settings.embed_model = HuggingFaceEmbedding(
|
95 |
model_name="BAAI/bge-small-en-v1.5"
|