redfernstech commited on
Commit
94d6668
·
verified ·
1 Parent(s): 00607ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -7
app.py CHANGED
@@ -17,15 +17,21 @@ import json
17
  import re
18
  from gradio_client import Client
19
  from simple_salesforce import Salesforce, SalesforceLogin
 
20
 
21
 
22
  # Define Pydantic model for incoming request body
23
  class MessageRequest(BaseModel):
24
  message: str
25
- repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
 
 
 
 
 
26
  llm_client = InferenceClient(
27
  model=repo_id,
28
- token=os.getenv("HF_TOKEN"),
29
  )
30
 
31
  os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
@@ -70,13 +76,20 @@ app.mount("/static", StaticFiles(directory="static"), name="static")
70
 
71
  templates = Jinja2Templates(directory="static")
72
  # Configure Llama index settings
 
 
 
 
 
 
 
 
73
  Settings.llm = HuggingFaceInferenceAPI(
74
- model_name="meta-llama/Meta-Llama-3-8B-Instruct",
75
- tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
76
- context_window=3000,
77
- token=os.getenv("HF_TOKEN"),
78
  max_new_tokens=512,
79
- generate_kwargs={"temperature": 0.1},
80
  )
81
  Settings.embed_model = HuggingFaceEmbedding(
82
  model_name="BAAI/bge-small-en-v1.5"
 
17
  import re
18
  from gradio_client import Client
19
  from simple_salesforce import Salesforce, SalesforceLogin
20
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
21
 
22
 
23
  # Define Pydantic model for incoming request body
24
  class MessageRequest(BaseModel):
25
  message: str
26
+ # repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
27
+ # llm_client = InferenceClient(
28
+ # model=repo_id,
29
+ # token=os.getenv("HF_TOKEN"),
30
+ # )
31
+ repo_id = "mistralai/Mistral-7B-Instruct-v0.1"
32
  llm_client = InferenceClient(
33
  model=repo_id,
34
+ token=os.getenv("HF_TOKEN")
35
  )
36
 
37
  os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
 
76
 
77
  templates = Jinja2Templates(directory="static")
78
  # Configure Llama index settings
79
+ # Settings.llm = HuggingFaceInferenceAPI(
80
+ # model_name="meta-llama/Meta-Llama-3-8B-Instruct",
81
+ # tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
82
+ # context_window=3000,
83
+ # token=os.getenv("HF_TOKEN"),
84
+ # max_new_tokens=512,
85
+ # generate_kwargs={"temperature": 0.1},
86
+ # )
87
  Settings.llm = HuggingFaceInferenceAPI(
88
+ model_name="mistralai/Mistral-7B-Instruct-v0.1",
89
+ token=os.getenv("HF_TOKEN"), # Your Hugging Face API token
90
+ context_window=4096, # Mistral-7B’s context window
 
91
  max_new_tokens=512,
92
+ generate_kwargs={"temperature": 0.1}
93
  )
94
  Settings.embed_model = HuggingFaceEmbedding(
95
  model_name="BAAI/bge-small-en-v1.5"