Spaces:
Running
Running
File size: 16,710 Bytes
60a19b7 4ddf4f2 6af1e9b 60a19b7 4ddf4f2 4cfe99e 60a19b7 4ddf4f2 1378b3b 4ddf4f2 1378b3b 65a487f 4cfe99e 1378b3b 6af1e9b 4ddf4f2 00607ed 60a19b7 ac13f73 65a487f ac13f73 bc69486 65a487f 60a19b7 bc69486 65a487f 4ddf4f2 1378b3b c3c81f6 1378b3b 4dd02a3 1378b3b 60a19b7 c2dfc52 4cfe99e c2dfc52 6af1e9b 60a19b7 4cfe99e c2dfc52 4ddf4f2 60a19b7 4ddf4f2 60a19b7 4ddf4f2 6af1e9b 4ddf4f2 6af1e9b 60a19b7 65a487f 60a19b7 65a487f 60a19b7 65a487f 4ddf4f2 6af1e9b 4cfe99e 6af1e9b 4cfe99e 4ddf4f2 ac13f73 4ddf4f2 6af1e9b 4cfe99e 4ddf4f2 6af1e9b 4ddf4f2 60a19b7 6af1e9b 4ddf4f2 60a19b7 1378b3b 60a19b7 1378b3b db6fcb0 60a19b7 6af1e9b db6fcb0 60a19b7 db6fcb0 6af1e9b db6fcb0 ca7d12d ac13f73 ca7d12d 6af1e9b ca7d12d db6fcb0 ac13f73 60a19b7 1378b3b 6b938ab 60a19b7 65a487f 60a19b7 ac13f73 60a19b7 65a487f 60a19b7 1378b3b 60a19b7 1378b3b 6af1e9b 1378b3b 77832fe 4ddf4f2 6af1e9b 4ddf4f2 6af1e9b 4ddf4f2 60a19b7 1378b3b 60a19b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# import os
# import time
# from fastapi import FastAPI,Request
# from fastapi.responses import HTMLResponse
# from fastapi.staticfiles import StaticFiles
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from pydantic import BaseModel
# from fastapi.responses import JSONResponse
# import uuid # for generating unique IDs
# import datetime
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.templating import Jinja2Templates
# from huggingface_hub import InferenceClient
# import json
# import re
# from gradio_client import Client
# from simple_salesforce import Salesforce, SalesforceLogin
# from llama_index.llms.huggingface import HuggingFaceLLM
# # Define Pydantic model for incoming request body
# class MessageRequest(BaseModel):
# message: str
# # repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# # llm_client = InferenceClient(
# # model=repo_id,
# # token=os.getenv("HF_TOKEN"),
# # )
# os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# username = os.getenv("username")
# password = os.getenv("password")
# security_token = os.getenv("security_token")
# domain = os.getenv("domain")# Using sandbox environment
# session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)
# # Create Salesforce object
# sf = Salesforce(instance=sf_instance, session_id=session_id)
# app = FastAPI()
# @app.middleware("http")
# async def add_security_headers(request: Request, call_next):
# response = await call_next(request)
# response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
# response.headers["X-Frame-Options"] = "ALLOWALL"
# return response
# # Allow CORS requests from any domain
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"],
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# @app.get("/favicon.ico")
# async def favicon():
# return HTMLResponse("") # or serve a real favicon if you have one
# app.mount("/static", StaticFiles(directory="static"), name="static")
# templates = Jinja2Templates(directory="static")
# # Configure Llama index settings
# # Settings.llm = HuggingFaceInferenceAPI(
# # model_name="meta-llama/Meta-Llama-3-8B-Instruct",
# # tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
# # context_window=3000,
# # token=os.getenv("HF_TOKEN"),
# # max_new_tokens=512,
# # generate_kwargs={"temperature": 0.1},
# # )
# # Configure Llama index settings
# Settings.llm = HuggingFaceLLM(
# model_name="google/flan-t5-small",
# tokenizer_name="google/flan-t5-small",
# context_window=512, # flan-t5-small has a max context window of 512 tokens
# max_new_tokens=256,
# generate_kwargs={"temperature": 0.1, "do_sample": True},
# device_map="auto" # Automatically use GPU if available, else CPU
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'
# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
# documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# storage_context = StorageContext.from_defaults()
# index = VectorStoreIndex.from_documents(documents)
# index.storage_context.persist(persist_dir=PERSIST_DIR)
# def initialize():
# start_time = time.time()
# data_ingestion_from_directory() # Process PDF ingestion at startup
# print(f"Data ingestion time: {time.time() - start_time} seconds")
# def split_name(full_name):
# # Split the name by spaces
# words = full_name.strip().split()
# # Logic for determining first name and last name
# if len(words) == 1:
# first_name = ''
# last_name = words[0]
# elif len(words) == 2:
# first_name = words[0]
# last_name = words[1]
# else:
# first_name = words[0]
# last_name = ' '.join(words[1:])
# return first_name, last_name
# initialize() # Run initialization tasks
# def handle_query(query):
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only
# {context_str}
# Question:
# {query_str}
# """
# )
# ]
# text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
# index = load_index_from_storage(storage_context)
# context_str = ""
# for past_query, response in reversed(current_chat_history):
# if past_query.strip():
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
# answer = query_engine.query(query)
# if hasattr(answer, 'response'):
# response=answer.response
# elif isinstance(answer, dict) and 'response' in answer:
# response =answer['response']
# else:
# response ="Sorry, I couldn't find an answer."
# current_chat_history.append((query, response))
# return response
# @app.get("/ch/{id}", response_class=HTMLResponse)
# async def load_chat(request: Request, id: str):
# return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# # Route to save chat history
# @app.post("/hist/")
# async def save_chat_history(history: dict):
# # Check if 'userId' is present in the incoming dictionary
# user_id = history.get('userId')
# print(user_id)
# # Ensure user_id is defined before proceeding
# if user_id is None:
# return {"error": "userId is required"}, 400
# # Construct the chat history string
# hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
# hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
# print(hist)
# # Get the summarized result from the client model
# result = hist
# try:
# sf.Lead.update(user_id, {'Description': result})
# except Exception as e:
# return {"error": f"Failed to update lead: {str(e)}"}, 500
# return {"summary": result, "message": "Chat history saved"}
# @app.post("/webhook")
# async def receive_form_data(request: Request):
# form_data = await request.json()
# # Log in to Salesforce
# first_name, last_name = split_name(form_data['name'])
# data = {
# 'FirstName': first_name,
# 'LastName': last_name,
# 'Description': 'hii', # Static description
# 'Company': form_data['company'], # Assuming company is available in form_data
# 'Phone': form_data['phone'].strip(), # Phone from form data
# 'Email': form_data['email'], # Email from form data
# }
# a=sf.Lead.create(data)
# # Generate a unique ID (for tracking user)
# unique_id = a['id']
# # Here you can do something with form_data like saving it to a database
# print("Received form data:", form_data)
# # Send back the unique id to the frontend
# return JSONResponse({"id": unique_id})
# @app.post("/chat/")
# async def chat(request: MessageRequest):
# message = request.message # Access the message from the request body
# response = handle_query(message) # Process the message
# message_data = {
# "sender": "User",
# "message": message,
# "response": response,
# "timestamp": datetime.datetime.now().isoformat()
# }
# chat_history.append(message_data)
# return {"response": response}
# @app.get("/")
# def read_root():
# return {"message": "Welcome to the API"}
import os
import time
import logging
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, PromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from simple_salesforce import Salesforce, SalesforceLogin
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
message: str
# Environment variables for Salesforce
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN", "") # Optional: Needed for model download if gated
username = os.getenv("username")
password = os.getenv("password")
security_token = os.getenv("security_token")
domain = os.getenv("domain", "test") # Default to sandbox environment
session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)
# Create Salesforce object
sf = Salesforce(instance=sf_instance, session_id=session_id)
app = FastAPI()
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
response = await call_next(request)
response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
response.headers["X-Frame-Options"] = "ALLOWALL"
return response
# Allow CORS requests from any domain
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/favicon.ico")
async def favicon():
return HTMLResponse("") # or serve a real favicon if you have one
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")
# Configure Llama index settings
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
Settings.llm = HuggingFaceLLM(
model_name="google/flan-t5-small",
tokenizer_name="google/flan-t5-small",
context_window=512, # flan-t5-small has a max context window of 512 tokens
max_new_tokens=256,
generate_kwargs={"temperature": 0.3, "do_sample": True}, # Increased temperature for better responses
model=AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small"),
tokenizer=tokenizer,
device_map="auto" # Automatically use GPU if available, else CPU
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
PERSIST_DIR = "db"
PDF_DIRECTORY = "data"
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
try:
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
logger.info(f"Loaded {len(documents)} documents from {PDF_DIRECTORY}")
if not documents:
logger.warning(f"No documents found in {PDF_DIRECTORY}. Ensure PDF files are present.")
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
logger.info(f"Index persisted to {PERSIST_DIR}")
except Exception as e:
logger.error(f"Error during data ingestion: {str(e)}")
raise
def initialize():
start_time = time.time()
data_ingestion_from_directory() # Process PDF ingestion at startup
logger.info(f"Data ingestion time: {time.time() - start_time} seconds")
def split_name(full_name):
# Split the name by spaces
words = full_name.strip().split()
# Logic for determining first name and last name
if len(words) == 1:
first_name = ""
last_name = words[0]
elif len(words) == 2:
first_name = words[0]
last_name = words[1]
else:
first_name = words[0]
last_name = " ".join(words[1:])
return first_name, last_name
initialize() # Run initialization tasks
def handle_query(query):
# Custom prompt template for flan-t5-small
text_qa_template = PromptTemplate(
"""
You are Clara, a Redfernstech chatbot. Answer the question in 10-15 words based on the provided context.
Context: {context_str}
Question: {query_str}
Answer:
"""
)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Build context from chat history
context_str = "\n".join([f"User asked: '{past_query}'\nBot answered: '{response}'"
for past_query, response in reversed(current_chat_history)])
logger.info(f"Query: {query}")
logger.info(f"Context: {context_str}")
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
logger.info(f"Raw query engine output: {answer}")
if hasattr(answer, "response") and answer.response:
response = answer.response.strip()
elif isinstance(answer, dict) and "response" in answer and answer["response"]:
response = answer["response"].strip()
else:
response = "Sorry, I couldn't find an answer."
logger.info(f"Processed response: {response}")
current_chat_history.append((query, response))
return response
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.post("/hist/")
async def save_chat_history(history: dict):
# Check if 'userId' is present in the incoming dictionary
user_id = history.get("userId")
logger.info(f"Received userId: {user_id}")
# Ensure user_id is defined before proceeding
if user_id is None:
return {"error": "userId is required"}, 400
# Construct the chat history string
hist = "".join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history["history"]])
hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
logger.info(f"Chat history: {hist}")
try:
sf.Lead.update(user_id, {"Description": hist})
except Exception as e:
logger.error(f"Failed to update lead: {str(e)}")
return {"error": f"Failed to update lead: {str(e)}"}, 500
return {"summary": hist, "message": "Chat history saved"}
@app.post("/webhook")
async def receive_form_data(request: Request):
form_data = await request.json()
# Log in to Salesforce
first_name, last_name = split_name(form_data["name"])
data = {
"FirstName": first_name,
"LastName": last_name,
"Description": f"New lead created via webhook: {form_data['name']}",
"Company": form_data.get("company", ""), # Assuming company might be optional
"Phone": form_data["phone"].strip(), # Phone from form data
"Email": form_data["email"], # Email from form data
}
a = sf.Lead.create(data)
# Generate a unique ID (for tracking user)
unique_id = a["id"]
logger.info(f"Received form data: {form_data}")
# Send back the unique id to the frontend
return JSONResponse({"id": unique_id})
@app.post("/chat/")
async def chat(request: MessageRequest):
message = request.message # Access the message from the request body
logger.info(f"Received chat message: {message}")
response = handle_query(message) # Process the message
message_data = {
"sender": "User",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat()
}
chat_history.append(message_data)
logger.info(f"Chat response: {response}")
return {"response": response}
@app.get("/")
def read_root():
return {"message": "Welcome to the API"} |